Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.4.211

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field  

Lee, Jeongwoo (Institute of Space Sciences, Shandong University)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.4, 2018 , pp. 211-218 More about this Journal
Abstract
Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.
Keywords
microwave radiation; spectroscopy; electron acceleration; solar flares;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Song QW, Nakajima H, Huang GL, Tan BL, Huang Y, et al., Turnover frequency in solar microwave bursts with an extremely flat optically thin spectrum, Sol. Phys. 291, 3619-3635 (2016). https://doi.org/10.1007/s11207-016-1004-0   DOI
2 Trottet G, Raulin JP, Gimenez de Castro G, Luthi T, Caspi A, et al., Origin of the Submillimeter Radio Emission During the Time-Extended Phase of a Solar Flare, Sol. Phys, 273, 339-361 (2011). https://doi.org/10.1007/s11207-011-9875-6   DOI
3 Zheleznyakov VV, Radio emission of the sun and planets (Pergamon Press, Oxford, 1970).
4 Ai-hua Z, Karlicky M, Magnetic field estimation in microwave radio sources, Sol. Phys. 153, 441-444 (1994). https://doi.org/10.1007/BF00712516   DOI
5 Benka SG, Holman GD, A thermal/nonthermal model for solar microwave bursts, Astrophys. J. 391, 854-864 (1992). https://doi.org/10.1086/171394   DOI
6 Dulk GA, Radio emission from the sun and stars, Ann. Rev. Astron. Astrophys. 23, 169-224 (1985). https://doi.org/10.1146/annurev.aa.23.090185.001125   DOI
7 Brown JC, The temperature structure of chromospheric flares heated by non-thermal electrons, Sol. Phys. 31, 143-169 (1973). https://doi.org/10.1007/BF00156080
8 Casini R, White SM, Judge PG, Magnetic diagnostics of the solar corona: synthesizing optical and radio techniques, Space Sci. Rev. 210, 145-181 (2017). https://doi.org/10.1007/s11214-017-0400-6   DOI
9 Dou Y, Gary DE, Liu Z, Nita GM, Bong SC, et al., The Korean solar radio burst locator (KSRBL), Publ. Astron. Soc. Pac. 121, 512-526 (2009). https://doi.org/10.1086/599624   DOI
10 Dulk GA , Marsh KA , Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons, Astrophys. J. 259, 350-358 (1982). https://doi.org/10.1086/160171   DOI
11 Gary DE, Hurford GJ, Radio spectral diagnostics, in Astrophysics and Space Science Library, Solar and Space Weather Radiophysics, eds. Gary DE, Keller CU (Springer, Dordrecht, 2004), 71-87.
12 Hwangbo JE, Lee J, Park SH, Kim S, Lee DY, et al., Magnetic structure and nonthermal electrons in the X6.9 flare on 2011 august 9, Astrophys. J. 786, 80 (2014). https://doi.org/10.1088/0004-637X/796/2/80   DOI
13 Holman GD, The effects of low- and high-energy cutoffs on solar flare microwave and hard X-ray spectra, Astrophys. J. 586, 606-616 (2003). https://doi.org/10.1086/367554   DOI
14 Huang G, Calculations of coronal magnetic field parallel and perpendicular to line-of-sight in microwave bursts, Sol. Phys. 237, 173-183 (2006). https://doi.org/10.1007/s11207-006-0097-2   DOI
15 Huang GL, Nakajima H, Diagnosis of coronal magnetic field with data of Nobeyama Radio Heliograph, New Astron. 7, 135-145 (2002). https://doi.org/10.1016/S1384-1076(02)00088-X   DOI
16 Kundu MR, Nindos A, Grechnev VV, The configuration of simple short-duration solar microwave bursts, Astron. Astrophys. 420, 351-359 (2004). https://doi.org/10.1051/0004-6361:20034461   DOI
17 Hwangbo JE, Bong SC, Park SH, Lee DY, Cho KS, et al., Burst locating capability of the Korean solar radio burst locator (KSRBL), J. Astron. Space Sci. 32, 91-99 (2015). http://doi.org/10.5140/JASS.2015.32.1.91   DOI
18 Kosugi T, Denis BR, Kai K, Energetic electrons in impulsive and extended solar flares as deduced from flux, Astrophys. J. 324, 1118-1131 (1988). https://doi.org/10.1086/165967   DOI
19 Kundu MR, Solar Radio Astronomy (John Wiley & Sons Inc., Hoboken, 1965).
20 Kuroda N, Gary DE, Wang H, Fleishman GD, Nita GM, et al., Three-dimensional forward-fit modeling of the hard X-ray and microwave emissions of the 2015 june 22 M6.5 flare, Astrophys. J. 852, 32 (2018). https://doi.org/10.3847/1538-4357/aa9d98   DOI
21 Lee J, Electron Transport During Solar Flares, in Astrophysics and Space Science Library, Solar and Space Weather Radiophysics, eds. Gary DE, Keller CU (Springer, Dordrecht, 2004), 179-202.
22 Melrose DB, Plasma Astrophysics (Gordon and Breach Science Pubilshers, New York, 1980).
23 Lee J, Recent progress in understanding solar magnetic reconnection, J. Astron. Space Sci. 32, 101-112 (2015). https://doi.org/10.5140/JASS.2015.32.2.101   DOI
24 Lee J, Gary DE, Spectral evolution of microwaves and hard X-rays in the 1989 March 18 flare and its interpretation, Sol. Phys. 153, 347-365 (1994). https://doi.org/10.1007/BF00712510   DOI
25 Lee J, Gary DE, Solar Microwave bursts and injection pitchangle distribution of flare electrons, Astrophys. J. 543, 457-471 (2000). https://doi.org/10.1086/317080   DOI
26 Lee J, Gary DE, Zirin H, Flat microwave spectra seen at X-class flares, Sol. Phys. 152, 409-428 (1994). https://doi.org/10.1007/BF00680447   DOI
27 Lin RP, Dennis BR, Hurford GJ, Smith DM, Zehnder A, The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI), Sol. Phys. 210, 3-32 (2002). https://doi.org/10.1023/A:1022428818870   DOI
28 Moschou SP, Sokolov I, Cohen O, Drake JJ, Borovikov D, Synthetic radio imaging for quiescent and CME-flare scenarios, Astrophys. J. 867, 51 (2018). https://doi.org/10.3847/1538-4357/aae58c   DOI
29 Nindos A, White SM, Kundu MR, Gary DE, Observations and models of a flaring loop, Astrophys. J. 533, 1053-1062 (2000). https://doi.org/10.1086/308705   DOI
30 Nita GM, Fleishman GD, Kuznetsov AA, Kontar EP, Gary DE, Three-dimensional radio and X-ray modeling and data analysis software: revealing flare complexity, Astrophys. J. 799, 236 (2015). https://doi.org/10.1088/0004-637X/799/2/236   DOI
31 Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL, A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, J. Comput. Phys. 154, 284-309 (1999). https://doi.org/10.1006/jcph.1999.6299   DOI
32 Ramaty R, Gyrosynchrotron emission and absorption in a magnetoactive plasma, Astrophys. J. 158, 753-770 (1969). https://doi.org/10.1086/150235   DOI
33 Rybicki GB, Lightman AP, Radiative processes in astrophysics (John Wiley & Sons Inc., Hoboken, 1985).
34 Raulin JP, White SM, Kundu MR, Silva AVR, Shibasaki K, Multiple Components in the Millimeter Emission of a Solar Flare, Astrophys. J. 522, 547-558 (1999). https://doi.org/10.1086/322974   DOI