Browse > Article
http://dx.doi.org/10.5695/JKISE.2021.54.6.348

A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma  

Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Publication Information
Journal of the Korean institute of surface engineering / v.54, no.6, 2021 , pp. 348-356 More about this Journal
Abstract
In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.
Keywords
Graphene; Defect-suppressed doping; Inductively coupled plasma; Optical emission spectroscopy; Electron excitation temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. H. Sheng, H. L. Gao, W. J. Bao, F. B. Wang, X. H. Xia, Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells, J. Mater. Chem., 22 (2012) 390.   DOI
2 Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, J. Kong, Work function engineering of graphene electrode via chemical doping, ACS Nano, 4 (2010) 2689-2694.   DOI
3 Y. C. Lin, C. Y. Lin, P. W. Chiu, Controllable graphene N-doping with ammonia plasma, Appl. Phys. Lett., 96 (2010) 133110.   DOI
4 Y. Wang, Y. Shao, D. W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano, 4 (2010) 1790-1798.   DOI
5 H. Park, S. J. You, W. Choe, Correlation between excitation temperature and electron temperature with two groups of electron energy distributions, Phys. Plasmas, 17 (2010) 103501.   DOI
6 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97 (2006) 187401.   DOI
7 S. P. Pang, H. N. Tsao, X. L. Feng, K. Mullen, Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors, Adv. Mater., 21 (2009) 3488-3491.   DOI
8 L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51.   DOI
9 J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Electric field effect tuning of electron-phonon coupling in graphene, Phys. Rev. Lett., 98 (2007) 166802.   DOI
10 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6 (2007) 652.   DOI
11 X. Wang, L. J. Zhi, K. Mullen, Transparent, cond uctive graphene electrodes for dye-sensitized solar cells, Nano Lett., 8 (2008) 323.   DOI
12 S. Wang, P. K. Ang, Z. Q. Wang, A. L. L. Tang, J. T. L. Thong, K. P. Loh, High mobility, printable, and solution-processed graphene electronics, Nano Lett., 10 (2010) 92.   DOI
13 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol., 3 (2008) 210.   DOI
14 M. Brunglinghaus, Mean free path, European Nuclear Society (2011).
15 W. Lochte-Holtgreven, Plasma Diagnostics, AIP, New york (1995).
16 P. W. J. M. Boumans, Inductively coupled plasma emission spectroscopy part 2, Wiley, New york (1987) Chap. 10.
17 NIST, Atomic spectra database, https://www.nist.gov/pml/atomic-spectra-database
18 Y. Nakayama, F. Soeda, A. Ishitani, XPS study of the carbon fiber matrix interface Carbon, 28 (1990) 21.   DOI
19 S. Y. Moon, W. Choe, H. S. Uhm, Y. S. Hwang, and J. J. Choi, Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube, Phys. Plasmas, 9 (2002) 4045.   DOI
20 M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett., 8 (2008) 3498.   DOI