• 제목/요약/키워드: positive curvature

Search Result 114, Processing Time 0.022 seconds

ON TRANSVERSALLY HARMONIC MAPS OF FOLIATED RIEMANNIAN MANIFOLDS

  • Jung, Min-Joo;Jung, Seoung-Dal
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.977-991
    • /
    • 2012
  • Let (M,F) and (M',F') be two foliated Riemannian manifolds with M compact. If the transversal Ricci curvature of F is nonnegative and the transversal sectional curvature of F' is nonpositive, then any transversally harmonic map ${\phi}:(M,F){\rightarrow}(M^{\prime},F^{\prime})$ is transversally totally geodesic. In addition, if the transversal Ricci curvature is positive at some point, then ${\phi}$ is transversally constant.

RIGIDITY OF GRADIENT SHRINKING AND EXPANDING RICCI SOLITONS

  • Yang, Fei;Zhang, Liangdi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.817-824
    • /
    • 2017
  • In this paper, we prove that a gradient shrinking Ricci soliton is rigid if the radial curvature vanishes and the second order divergence of Bach tensor is non-positive. Moreover, we show that a complete non-compact gradient expanding Ricci soliton is rigid if the radial curvature vanishes, the Ricci curvature is nonnegative and the second order divergence of Bach tensor is nonnegative.

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.

CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1311-1332
    • /
    • 2013
  • This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power ${\beta}$ of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity by horospheres is preserved and the hypersurfaces shrink down to a single point as the final time is approached.

SPHERICAL CAPS IN A CONVEX CONE

  • Um, Taekwan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.601-603
    • /
    • 2013
  • We show that a compact embedded hypersurface with constant ratio of mean curvature functions in a convex cone $C{\subset}\mathbb{R}^{n+1}$ is part of a hypersphere if it has a point where all the principal curvatures are positive and if it is perpendicular to ${\partial}C$.

An Experimental Study of Turbulent Uniform Shear Flow in a Nearly Two-Dimensional $90^{\circ}$ Curved Duct (II) - Turbulent Flow Field- (2차원 $90^{\circ}$ 곡관에서 균일전단류의 특성에 대한 실험적 연구 (2) -난류유동장-)

  • 임효재;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.846-857
    • /
    • 1995
  • An experimental study is made of turbulent shear flows in a nearly two-dimensional 90.deg. curved duct by using the hot-wire anemometer. The Reynolds normal and shear stresses, triple velocity products, integral length scales, Taylor micro length scales and dissipation length scales are measured and analyzed. For a positive shear at the inlet, the afore-mentioned turbulence quantities are all suppressed. However, when the inlet shear flow is negative, they are augmented, i.e., the convex curvature suppresses the turbulence whereas the concave curvature augments it. It is found that the curvature effects are rather sensitive to the triple velocity products than the Reynolds stresses. The evolution of turbulence under the curvature with the different shear conditions is well described by the modified curvature parameter S' and the non-dimensional development time ${\tau}$.'