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FINITE GROUP ACTIONS ON

SELF-DUAL 4-MANIFOLDS WITH

POSITIVE SCALAR CURVATURE

YONG SEUNG CHO

1. Introduction
Let M be a compact, connected, orientable smooth 4-manifold. Let

G be a compact semisimple Lie group with Lie algebra Y and let
1r : P -I- M be a principal G-bundle over M. A connection on P is a
Y-valued I-form on P which has horizontal kernel, namely w(i.A) = A
where i. : Y -I- T P is the natural inclusion into the vertical subspace
and w is the projection to the vertical space, and which is equivari­
ant, g*w(X) = (Adg-1)w(X) for X E r(TP) and 9 E G. Since the
difference A = VI - V2 of two connections pulls down to M as a Lie
algebra valued one form, the set of connections on P fonns an affine
space r(T*M 0 Y) == n 1 (Adp). A connection determines a covariant
derivative V : nO(Adp) -I- n1(Adp). We extend it to the covariant
exterior derivative dV : np(Adp) -I- np+I(Adp) by composing V with
exterior multiplication, and we have L2-adjoint dV * by composing V
with contraction. The curvature Fv of the connection V is a zero-order
operator given by

here {ei} is a local conframe of a local frame {ei}' On the oriented
Riemannian 4-manifold M the Hodge star operator * : f\P - 1\4-p is
defined by ° 1\ *{3 = (0, {3)dvol where 0, {3 E I\P and (0, {3) is the inner
product on P-forms. On 2-forms *2 = 1 and * is conformally invariant.
A connection V on a G-bundle P -I- M is self dual (anti-self-dual) if
its curvature Fv is self-dual (anti-self-dual), i.e., *Fv = Fv(-Fv).
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The complex vector bundles (i.e. U(n)-bundles) E on M are clas­
sified upto topological isomorphism by their rank and their Chew
classes cl(E) E H2(M : Z), c2(E) E H 4 (M : Z). H a U(n)-bundle
E --. M is reduced to an SU(n)-bundle, then the second Chew class
c2(E) determines the bundle E. In the case of SO(n), its double cov­
ering Spin(n) is simply connected for n > 2 and an SO(n)-bundle
E on M can be lifted to an Spin(n)-bundle iff its second Stiefel­
Whitney class w2(E) E H 2(M : Z2) is zero. H n > 2 and n i= 4,
then SO(n) is simple and the SO(n) bundles E on M are classified
by w2(E) and the first Pontrjagin class Pl(E). The group 50(4) is
not simple since 80(4) = s0(3) $ 80(3). The 50(4)-bundles E -+ M
are classified by w2(E), Pl(E) and the fourth Stiefel-Whitney class
w4(E) E H4(M : Z2).

For a Riemannian 4-manifold there is a unique Levi-Civita con­
nection and we will denote the Riemannian curvature of M by R E
r(1\2(8)s0(4» = r(1\2®1\2). By the Hodge star operator * we split 1\2 =
I\~ $I\~. The symmetric tensor R is an element of Sym2(1\~ Ea I\~).

By Singer-Thorpe curvature tensor R breaks into 5 irreducible compo­
nents (Sym21\~)O Ea (1) + [I\~, I\~] $ (Sym21\~)O + (1) where 0 denotes
the traceless elements in the symmetric product. Under this decom­
position R = (W+, lC2,2B, W_, t2) where c is the scalar curvature, B
is the traceless Ricci tensor, and W± are the self-dual and anti-self­
dual components of the conformally invariant Weyl tensor. The four
manifold M is called Einstein if B == 0, conformally flat if W == 0 and
self-dual (anti-self-dual) if W_ == o(W+ == 0). H M is a spin manifold,
then the connection induced on the self-dual spin bundle V+ -+ M by
the Levi-Civita connection is self-dual iff M is Einstein. Examples of
self-dual spaces are 54 and P2(C) with their usual matrics. They are
Einstein and have positive scalar curvature. Hitchin has proved that
54 and P2(C) are the only self-dual Einstein manifolds with positive
scalar curvature.

Let P is a principal G-bundle over M, P X G G the bundle associated
to P with fiber G, the G-action on itself by the adjoint one. The space
of sections r(P x G G) is called the gauge group :F of P which forms a
group under pointwise multiplication. The gauge group :F has a natu­
ral action on the space of connection which comes from G-action on its
Lie algebra. Atiyah, Drinfeld, Hitchin and Manin provide a description
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of the moduli space of gauge equivalence classes of self-dual connec­
tions on 54 (when C2 (E) = -1) by corresponding holomorphic vector
bundles on P3(C) (which is called the Ward correspondence). The
Donaldson's celebrated theorem on the intersection forms of smooth
compact definite 4-manifolds is proved by the topological properties of
the moduli space of 5U(2)-self-dual connections of c2(E) = -1 bundle
on the given manifold.

In this paper we assume that M is a compact, simply connected
smooth 4-manifold with positive definite intersection form.

In Section 2, we show that each G-equivariant U(l)-bundle TJ over M
has a unique G-invariant self-dual connection upto gauge equivalence
where G is a finite group. Suppose that a finite group G acts trivially
on H 2 (M : Z), then the reducible self-dual connections on the moduli
space M are fixed by the G-action.

In Section 3, if a self-dual reducible connection is H -invariant, then
the group H acts on H*(M ; R) trivially here * is 0, 1 or H'!. and
on H*( M : 7J) by complex multiplication. If M is a compact, self­
dual lliemannian 4-manifold with positive scalar curvature, then for
all self-dual connection V' the second cohomology group of the funda-

dV

mental elliptic complex 0 --+ nO(Adp)~ n 1(Adp) ---=-t fl=-(Adp) --+ 0

vanishes.
In Section 4, as an example, we give an Zp-action on P2(C). We

construct an 5U(2)-bundle F --+ P2(C) with the second Chern number
-1 and with Zp-action. The moduli space of self-dual connections on
F is an open cone on P2( C). When we choose a Zp-invariant metric
on P2(C) this moduli space is a Zp-space. The cone point is fixed by
the Zp-action.

2. U(l )-bundle on 4-manifolds

From the works of Donaldson and Freedman, the simply connected
compact smooth 4-manifold M with positive definite intersection form
is homeomorphic to a connected sum of n copies of P 2 (C),

The second cohomology group H 2(M : Z) is the direct sum of n copies
of Z, and the intersection form w can be diagonalized into (1) EB· .. EB (1 )
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over the integers. Let G be a finite group and act on M. By the work
of Donaldson, the G-action on M can be reduced to that on p2(C).
We may consider an induced representation of G on the cohomology
group H 2(M : Z) preserving the intersection form w, namely

p: d -+ Aut(H2 (M: Z),w).

Let H be the kernel of the representation. Then H acts trivially on M
upto homotopy.

THEOREM 2.1 (CONNER-RAYMOND). There exists a complex line
bundle "1 over M such that cl("1?[M] = 1, and the group action H on
M can be lifted to the total space "1.

If we consider the direct sum E = "1 ffi "1- 1
, we have an SU(2)-bundle

E = "1 ffi "1- 1
-t M with H-action. Since c2(E) = Cl("1)· Cl("1- 1

) =
-Cl("1)2, we have c2(E)[M] = -1. By averaging we may choose an
H -invariant metric on M. Let M be the moduli space of the gauge
equivalence classes of self-dual connections of E. Then the moduli
space M has an H -action and has a formal 5-dimension. The formal
5-dimensional topological space M may have singular points because
of the non-zero of the second cohomology group H 2(M : Z) and the
transversality of the fundamental elliptic operator (cf. Theorem 3.3).

IfM is a compact self-dual Riemannian manifold with positive scalar
curvature, then the space M of irredecible self-dual connections on E is
a smooth 5-dimensional manifold with H -action. Since H preserves the
reducible connections the moduli space M is a smooth 5-dimensional
manifold with n-singular points PI, ... ,pn each of which corresponds
to the bundle splitting E = "1 ffi 1]-1.

THEOREM 2.2. Each H-equivariant U(1)-bundle "1 over M has a
unique H -invariant self-dual connection upto gauge equivalence.

Proof. Let 'V be a connection on "1. By averaging 'V over H we have

an H-invariant connection 'VI = I~I L h'Vh- 1
• Locally 'VI = d+iA

heR
where A is a real valued one form. The curvature of 'VI is FVl =
idA which is H-invariant. The cohomology class 2~Fvl represents the
Euler class Cl("1) for the bundle "1. By the Hodge Theorem there is the
unique harmonic form h E Q2(M) such that [h] = 2i1rFvl = Cl("1). So
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Zi7rFVl - h = dA where A E n1(M) is H-invariant by averaging. Let
Vz = VI + i21l" A. The connection Vz is an H -invariant connection
on 'rJ. FV2 = FV1 + i21l"dA = -21l"ih is an H-invariant harmonic 2­
form. Since H acts on M as isometries, H acts on n~(M) which are
the ±l-eigenspaces of the Hodge star operator on M. Since M has
a positive definite fonn, FV 2 E Hi(M : R) and V 2 is a self-dual H­
invariant connection on TJ. Uniqueness, if V' is any other H-invariant
connection on TJ with FV2 = FV/ then V' = V z + iA' here dA' = 0

and A' is H-invariant. Since M is simply connected A' = d! for some
real valued function! on M. Thus we have

exp(-if)Vz exp(if) = V z + id! = V'

we complete the proof.

For any manifold M (we treat only compact simply connected 4­
manifolds) each cohomology class of H 2 (M : Z) corresponds an equiv­
alence class of complex line bundles over M. The SU(2)-bundles over
a compact oriented 4-manifold M are classified by the cohomology
classes in H 4 (M : Z) which are their second Chern classes.

THEOREM 2.3. Suppose that a finite group H acts trivially on
H 2 (M : Z). Then the reducible self-dual connections on the moduli
space M are fixed by H -action.

Proof. By construction bundle E -+ M has its Euler class c2(E) =
-1. The bundle E has n distinct splittings where n = rank H 2 (M : Z).
So there are complex line bundles 'rJ1, ... , TJn such that E = TJ1 EB TJl 1 =
... = TJn EB TJ;;I. By theorem 2.2, there is a unique H-invariant self­
dual connection Vi for each U(l)-bundle TJi such that Cl(TJi) = 2i1rFv;.
Then Vi = Vi EB Vi (i = 1,'" ,n) are H-invariant reducible self-dual
SU(2)-connections on E. The curvature of Vi is Fv ; = Fv; EB (-Fv;)
(i = 1",' ,n). The curvatures FVi (i = 1" .. , n) are H-invariant and
self-dual. Thus we prove the Theorem.

REMARK [1]. Suppose that the bundle E splits, i.e. E = TJ EB TJ -1.

Let VI be a self-dual H-invariant connection on TJ -+ M. The Euler
clasSCl(TJ) = 2i1rFvl E H 2(M: Z)andtheEulerclassc2(E) = -Cl(TJ?
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By Chern-Weil formula C2 (E) = 8;2 tr Fv 1\ Fv, where

Since FVl is self-dual we may write locally

FVl = I: Fijdxi 1\ dXj

= Fl2(dxl 1\ dX2 + dX3 1\ dX4) + Fl3(dxl 1\ dX3 + dX4 1\ dX2)

+ Fl4(dxl 1\ dX4 + dX2 1\ dX3)

Thus c2(E) = 2;2 (Ff2 +Ffa +Ff4)dxll\dx2I\dx3I\dx4' where the Fij'S
are imaginary number valued functions on M. Hence -2k fM(Ff2 +
F{3 + F{4 )dvol = 1.

[2]. Suppose that two connections Y'1 and Y'2 are H-invanant and
that g(V1 ) = V 2 where 9 is a gauge transformation. Then h[g(Vl)] =
h[Y'2] = V 2 = g(Y'I) = g[h(Y'I)]' Thus [g, h](Y'I) = VI and the gauge
transformation [g, h] belongs to the isotropy group of VI. If V 1 is
irreducible, then [g, h] = ±l. If Y'1 is reducible, then [g, h] E rVll

where rVl = {g E Flg(\7I) = Y'd is the isotropy group of Y'1.

3. Self·dual 4·manifolds with positive scalar curvature

We would like to investigate the H -action near the H -invariant re­
ducible connections. Suppose that the bundle E is of a form of a
parallel splitting E = 1] $1]-1 with a corresponding reducible connec­
tion Y' = Y'1 E& VI, where Y'1 is a self-dual H-invariant U(1)-connection
on '1. Since H acts on each fiber as a complex linear isometry and is
parallel, E = '1 E& '1-1 is H-parallel splitting. The corresponding Lie
algebra bundle is splitted as e $ '12 where e is the trivial real bun­
dle and '12 = 1] 0 '1 is a complex line bundle. The isotropy group
rv = {g EFl gY'g-1 = V} is isomorphic to SI. It is clear that the



Finite group actions on self-dual 4-manifolds 93

stabilizer and H commute each other. They act on the Adp by the
conjugation,

Thus they act trivially on c and act by rotation by 28 on 7]2. The
fundamental elliptic complex

is rv and H-invariant. Thus the cohomology groups H*(M : Adp)
are rv and H -representations. According to the bundle splitting, the
cohomology groups are also splitted such as H*(M : Adp) = H*(M :
R) Efl H*(M : 1]2).

THEOREM 3.1. If a self-dual reducible connection \7 is H -invariant,
then

(1) r v and H act trivially on HO(M: R), H1(M: R) and H:(M:
R).

(2) rv and H act on H*(M : 1]2) by complex multiplication.
This makes H*(A1 : 1]2) into complex vector spaces. Suppose that the
manifold M is compact, simply connected and has positive definite
intersection form. Then HO(M : R) = R, H1(M : R) = 0 and
H:'(M : R) = o. By Atiyah-Singer index theorem the fundamental
elliptic complex has formal index 5.

COROLLARY 3.2. If M is a compact simply connected manifold with
positive definite intersection form, then

(1) HO(M : R) = R, on which rv and H act trivially
(2) HI (M : 1]2) = C p+3 and H 2 (M : 1]2) = CP on which r v and H

act by complex multiplication.
Furthermore if M is a self-dual manifold with positive scalar curva­

ture, then
(3) HI(M : 1]2) = C 3 and H 2(M : 1]2) = 0 (cf Theorem 3.3)
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THEOREM 3.3 ([AHS]). Let M be a compact, self-dual, Riemann­
iaIl manifold of dimension 4 with positive scalar curvature. Then the
second cohomology H2 of the fundamental elliptic complex

vanishes for all self-dual connections. Moreover the moduli space M
is an H -space.

Proof. Replace the above elliptic complex by a single elliptic oper­
ator

where v· is the L2-adjoint of V. We may write this by the Dirac
operator

J): COO(V+ 0 V_ ® Adp) -+ COO(V_ 0 V_ 0 Adp)

where V± are ±!-spinor bundles and JfX...u) = E ei . Ve;u defined by
the Riemannian connection and the given connection on Adp, and the
Clifford multiplication by 1\1 on V. We may use the same notation JP
for its formal adjoint operator.

where {ei} is the local dual basis of the local basis {ei} of the tangent
bundle. Since V·V = - E V ei V eo and c2 (R) = ! E eiei(Vei Vej ­
V ej V ei ) we obtain the Weitzenbock formula of

Suppose that Jfh = 0, then JfJ u = 0, and
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Here the map

is an endomorphism.
The curvature

95

Since the connection V' on Adp is self-dual, R(Adp) E /\~(Adp). The
Clifford multiplication of /\~ on V_ is trivial, so c2 (1 0 R(Adp)) = o.
Since R(V_0V_) E C OO (/\2 0 /\2), only the components in COO(/\:"0/\:")
act nontrivially on V_. Since our manifold M is self-dual, the anti-self­
dual part of the Weyl curvature tensor w == o. Since M has positive
scalar curvature, the scalar c2(R) > o. From (*) if DO" = 0, then
0" = 0.

If M is a self-dual manifold with positive scalar curvature, then
the moduli space of gauge equivalence classes of self-dual connections
has only singular points PI, ... ,pn which come from the bundle split­
tings. Moreover if we choose a H -invariant metric on M, then the
moduli space M is a 5-dimensional manifold with H -action except the
n-singular points PI, ... ,pn.

THEOREM 3.4. If H acts trivially on the cohomology H*(M : Z),
then H has complex representations horizontally and trivial represen­
tation vertically on each cone neighbourhood of the singular points
PI,'" ,pn.

Proof. By Corollary 3.2 the moduli space has a neighbourhood c 3 / sI

at each singular point. The H -action on the moduli space M fixes the
singular points.

4. Finite group actions on P2( C)

The 5U(2)-vector bundles on a compact oriented 4-manifold M
come from their classifing bundle, the tautological quaternion line bun­
dle E -t 54. By Hitchin's theorem P2(C) and 54 are the only self-dual
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Einstein manifolds with positive scalar curvature. Let f : P2(C) -t S4
be a degree one map. The pull-back bundle F == f-I(E) -t P 2(C) has
the second Chern number c2(F) == -1. We would like to investigate
finite group actions on P 2(C) and on the moduli space of gauge equiv­
alence classes of self-dual connections on F -t P2(C), Consider finite
group actions on P 2(C). We introduce a theorem of Bredon concerning
cyclic group actions on P2(C),

THEOREM 4.1 (BREDON). Let Zp be a cyclic group where p is
prime. Let Zp act on P 2 (C) such that the induced action on the
cohomology groups H*(P 2(C» is trivial. Then the fixed point set of
Zp is one of the followings;

(I) a set consisting of one point and a disjoint 2-sphere 52,
(11) a set consisting of three isolated points.
In particular, the fixed point set of Z2 is only of type (1).

EXAMPLE 4.2. Consider the action of Zp on P 2(C) defined by
mg[zo, Zl, Z2] = [wzo, Zl, Z2] where w = e p and 9 is a generator of Zp.

Suppose that [zo, Zl, Z2] is a fixed point of Zp .g[zo, Zl, Z2] = [wzo, Zl,
Z2] = ['\zo, '\Zl, '\Z2] for some complex number ,\ f: o. If Zo f: 0
then w = ,\ f: -1 and [zo, Zl, Z2] = [1,0,0], and if z = 0, then
,\ == 1 and [ZO,ZI,Z2] = [0,ZI,Z2]' This action has one isolated fixed
point p = [1,0,0) and one fixed complex projective line PI(C) in
P 2(C). The normal bundle at p may be identified with the space
{[I, Zl , Z2) IZl ,Z2 E C}. The action of 9 on the normal bundle is given
by g[l,zt,z2) = [W,ZI,Z2] = [1,ZIW-\Z2W-I]. Thus the action 9 on
the normal bundle is a rotation through the angle ~'If (p - 1). Now
consider the fixed complex projective line PI(C) = 52 in P2(C). The·
fiber of the normal bundle at a point [0, a, b] E 52 may be identified
with the space {[z, a, b] IZ E Cl. The action of 9 on this fiber is given
by g[z, a, b] = [wz, a, b] and hence the rotation angle associated to 9 on
S2 is 2p'lf. Since any complex line in P 2(C) has self intersection at a
single point, the Euler number of the normal bundle is one.

For each 9 E Zp the induced action of 9 on the cohomology groups
H*(P 2(C) : Z) is trivial. By Conner and Raymond's theorem there
is a U(l)-bundle TJ - P 2 (C) on P 2(C) such that the square of the
first Chern class CI(1J)2 = 1 and Zp acts on the bundle TJ -t P 2(C)
as a bundle map. Since 5U(2)-bundle are classified by their second
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Chern class, the SU(2)-bundle 1] Efl"fj -t P2(C) has the second Chern
number C2(1] Efl"fj) = -1 and 1] Efl"fj is isomorphic to the pull back bundle
F = f-I(E) obtained by a degree one map f : P2(C) -+ S4.

Taubes' existence theorem says that the principal SU(2)-bundle over
S4 has a nonnegative Pontrjagin class and irreducible self-dual connec­
tions, and hence any principal SU(2)-bundle on a definite 4-manifold
M with the identical Pontrajagin class has irredcible self-dual connec­
tions. The SU(2)-bundle F --+ P 2 (C) has irreducible connections and
the moduli space of gauge equivalence classes of self-dual connections
has a dimension 5. In fact the moduli space is an open cone on P2(C),
The cone point is corresponded by the U(1)-bundle 1] --+ P 2(C). By
Theorem 2.3 and Theorem 3.3, we have the following theorem.

THEOREM 4.3. Under the above assumptions
(1) Zp acts on the moduli space when we take a Zp-invariant metric

on P2(C),
(ll) the cone point of the moduli space is fixed by the Zp-action.
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