FINITE GROUP ACTIONS ON SELF-DUAL 4-MANIFOLDS WITH POSITIVE SCALAR CURVATURE

YONG SEUNG CHO

1. Introduction

Let M be a compact, connected, orientable smooth 4-manifold. Let G be a compact semisimple Lie group with Lie algebra $\mathcal Y$ and let $\pi:P\to M$ be a principal G-bundle over M. A connection on P is a $\mathcal Y$ -valued 1-form on P which has horizontal kernel, namely $\omega(i_*A)=A$ where $i_*:\mathcal Y\to TP$ is the natural inclusion into the vertical subspace and ω is the projection to the vertical space, and which is equivariant, $g^*\omega(X)=(Adg^{-1})\omega(X)$ for $X\in\Gamma(TP)$ and $g\in G$. Since the difference $A=\nabla_1-\nabla_2$ of two connections pulls down to M as a Lie algebra valued one form, the set of connections on P forms an affine space $\Gamma(T^*M\otimes\mathcal Y)\equiv\Omega^1(Adp)$. A connection determines a covariant derivative $\nabla:\Omega^0(Adp)\to\Omega^1(Adp)$. We extend it to the covariant exterior derivative $d^\nabla:\Omega^p(Adp)\to\Omega^{p+1}(Adp)$ by composing ∇ with contraction. The curvature F_∇ of the connection ∇ is a zero-order operator given by

$$[F_{\nabla}, \sigma] = \frac{1}{2} \sum_{i \neq j} e^{i} \wedge e^{j} (\nabla_{e_{i}} \nabla_{e_{j}} - \nabla_{e_{j}} \nabla_{e_{i}} - \nabla_{[e_{i}, e_{j}]}) \sigma,$$

here $\{e^i\}$ is a local conframe of a local frame $\{e_i\}$. On the oriented Riemannian 4-manifold M the Hodge star operator $*: \wedge^p - \wedge^{4-p}$ is defined by $\alpha \wedge *\beta = (\alpha, \beta) dvol$ where $\alpha, \beta \in \wedge^p$ and (α, β) is the inner product on P-forms. On 2-forms $*^2 = 1$ and * is conformally invariant. A connection ∇ on a G-bundle $P \to M$ is self-dual (anti-self-dual) if its curvature F_{∇} is self-dual (anti-self-dual), i.e., $*F_{\nabla} = F_{\nabla}(-F_{\nabla})$.

Received March 20, 1990. Revised May 22, 1990.

This work was partially supported by a KOSEF grant.

The complex vector bundles (i.e. U(n)-bundles) E on M are classified upto topological isomorphism by their rank and their Chern classes $c_1(E) \in H^2(M:\mathbf{Z}), c_2(E) \in H^4(M:\mathbf{Z})$. If a U(n)-bundle $E \to M$ is reduced to an SU(n)-bundle, then the second Chern class $c_2(E)$ determines the bundle E. In the case of SO(n), its double covering Spin(n) is simply connected for n>2 and an SO(n)-bundle E on E can be lifted to an Spin(n)-bundle iff its second Stiefel-Whitney class $\omega_2(E) \in H^2(M:\mathbf{Z}_2)$ is zero. If n>2 and $n\neq 4$, then SO(n) is simple and the SO(n) bundles E on E are classified by $\omega_2(E)$ and the first Pontrjagin class $p_1(E)$. The group SO(4) is not simple since $so(4) = so(3) \oplus so(3)$. The SO(4)-bundles $E \to M$ are classified by $\omega_2(E)$, $p_1(E)$ and the fourth Stiefel-Whitney class $\omega_4(E) \in H^4(M:\mathbf{Z}_2)$.

For a Riemannian 4-manifold there is a unique Levi-Civita connection and we will denote the Riemannian curvature of M by $R \in$ $\Gamma(\wedge^2 \otimes so(4)) = \Gamma(\wedge^2 \otimes \wedge^2)$. By the Hodge star operator * we split $\wedge^2 =$ $\wedge_{+}^{2} \oplus \wedge_{-}^{2}$. The symmetric tensor R is an element of Sym²($\wedge_{+}^{2} \oplus \wedge_{-}^{2}$). By Singer-Thorpe curvature tensor R breaks into 5 irreducible components $(\operatorname{Sym}^2 \wedge_+^2)^0 \oplus (1) + [\wedge_+^2, \wedge_-^2] \oplus (\operatorname{Sym}^2 \wedge_-^2)^0 + (1)$ where o denotes the traceless elements in the symmetric product. Under this decomposition $R = (W_+, \frac{c}{12}, 2B, W_-, \frac{c}{12})$ where c is the scalar curvature, B is the traceless Ricci tensor, and W+ are the self-dual and anti-selfdual components of the conformally invariant Weyl tensor. The four manifold M is called Einstein if $B \equiv \mathbf{o}$, conformally flat if $W \equiv \mathbf{o}$ and self-dual (anti-self-dual) if $W_{-} \equiv \mathbf{o}(W_{+} \equiv \mathbf{o})$. If M is a spin manifold, then the connection induced on the self-dual spin bundle $V_+ \to M$ by the Levi-Civita connection is self-dual iff M is Einstein. Examples of self-dual spaces are S^4 and $P_2(C)$ with their usual matrics. They are Einstein and have positive scalar curvature. Hitchin has proved that S^4 and $P_2(C)$ are the only self-dual Einstein manifolds with positive scalar curvature.

Let P is a principal G-bundle over M, $P \times_G G$ the bundle associated to P with fiber G, the G-action on itself by the adjoint one. The space of sections $\Gamma(P \times_G G)$ is called the gauge group \mathcal{F} of P which forms a group under pointwise multiplication. The gauge group \mathcal{F} has a natural action on the space of connection which comes from G-action on its Lie algebra. Atiyah, Drinfeld, Hitchin and Manin provide a description

of the moduli space of gauge equivalence classes of self-dual connections on S^4 (when $c_2(E) = -1$) by corresponding holomorphic vector bundles on $\mathbf{P_3}(\mathbf{C})$ (which is called the Ward correspondence). The Donaldson's celebrated theorem on the intersection forms of smooth compact definite 4-manifolds is proved by the topological properties of the moduli space of SU(2)-self-dual connections of $c_2(E) = -1$ bundle on the given manifold.

In this paper we assume that M is a compact, simply connected smooth 4-manifold with positive definite intersection form.

In Section 2, we show that each G-equivariant U(1)-bundle η over M has a unique G-invariant self-dual connection upto gauge equivalence where G is a finite group. Suppose that a finite group G acts trivially on $H^2(M: \mathbb{Z})$, then the reducible self-dual connections on the moduli space \mathcal{M} are fixed by the G-action.

In Section 3, if a self-dual reducible connection is H-invariant, then the group H acts on $H^*(M:\mathbf{R})$ trivially here * is 0, 1 or H^2 and on $H^*(M:\eta)$ by complex multiplication. If M is a compact, self-dual Riemannian 4-manifold with positive scalar curvature, then for all self-dual connection ∇ the second cohomology group of the fundamental elliptic complex $\mathbf{o} \to \Omega^0(Adp) \xrightarrow{\nabla} \Omega^1(Adp) \xrightarrow{d^{\nabla}} \Omega^2_-(Adp) \to \mathbf{o}$ vanishes.

In Section 4, as an example, we give an \mathbb{Z}_p -action on $\mathbb{P}_2(\mathbb{C})$. We construct an SU(2)-bundle $F \to \mathbb{P}_2(\mathbb{C})$ with the second Chern number -1 and with \mathbb{Z}_p -action. The moduli space of self-dual connections on F is an open cone on $\mathbb{P}_2(\mathbb{C})$. When we choose a \mathbb{Z}_p -invariant metric on $\mathbb{P}_2(\mathbb{C})$ this moduli space is a \mathbb{Z}_p -space. The cone point is fixed by the \mathbb{Z}_p -action.

2. U(1)-bundle on 4-manifolds

From the works of Donaldson and Freedman, the simply connected compact smooth 4-manifold M with positive definite intersection form is homeomorphic to a connected sum of n copies of $\mathbf{P}^2(\mathbf{C})$,

$$M \simeq \mathbf{P}^2(\mathbf{C}) \# \cdots \# \mathbf{P}^2(\mathbf{C}).$$

The second cohomology group $H^2(M:Z)$ is the direct sum of n copies of \mathbb{Z} , and the intersection form ω can be diagonalized into $(1) \oplus \cdots \oplus (1)$

over the integers. Let G be a finite group and act on M. By the work of Donaldson, the G-action on M can be reduced to that on $\mathbf{P}^2(\mathbf{C})$. We may consider an induced representation of G on the cohomology group $H^2(M:\mathbf{Z})$ preserving the intersection form ω , namely

$$\rho: G \to \operatorname{Aut}(H^2(M:\mathbf{Z}),\omega).$$

Let H be the kernel of the representation. Then H acts trivially on M upto homotopy.

THEOREM 2.1 (CONNER-RAYMOND). There exists a complex line bundle η over M such that $c_1(\eta)^2[M] = 1$, and the group action H on M can be lifted to the total space η .

If we consider the direct sum $E = \eta \oplus \eta^{-1}$, we have an SU(2)-bundle $E = \eta \oplus \eta^{-1} \to M$ with H-action. Since $c_2(E) = c_1(\eta) \cdot c_1(\eta^{-1}) = -c_1(\eta)^2$, we have $c_2(E)[M] = -1$. By averaging we may choose an H-invariant metric on M. Let M be the moduli space of the gauge equivalence classes of self-dual connections of E. Then the moduli space M has an H-action and has a formal 5-dimension. The formal 5-dimensional topological space M may have singular points because of the non-zero of the second cohomology group $H^2(M:\mathbb{Z})$ and the transversality of the fundamental elliptic operator (cf. Theorem 3.3).

If M is a compact self-dual Riemannian manifold with positive scalar curvature, then the space \mathcal{M} of irredecible self-dual connections on E is a smooth 5-dimensional manifold with H-action. Since H preserves the reducible connections the moduli space \mathcal{M} is a smooth 5-dimensional manifold with n-singular points p_1, \dots, p_n each of which corresponds to the bundle splitting $E = \eta \oplus \eta^{-1}$.

THEOREM 2.2. Each H-equivariant U(1)-bundle η over M has a unique H-invariant self-dual connection upto gauge equivalence.

Proof. Let ∇ be a connection on η . By averaging ∇ over H we have an H-invariant connection $\nabla_1 = \frac{1}{|H|} \sum_{h \in H} h \nabla h^{-1}$. Locally $\nabla_1 = d + iA$

where A is a real valued one form. The curvature of ∇_1 is $F_{\nabla_1} = idA$ which is H-invariant. The cohomology class $\frac{i}{2\pi}F_{\nabla_1}$ represents the Euler class $c_1(\eta)$ for the bundle η . By the Hodge Theorem there is the unique harmonic form $h \in \Omega^2(M)$ such that $[h] = \frac{i}{2\pi}F_{\nabla_1} = c_1(\eta)$. So

 $\frac{i}{2\pi}F_{\nabla_1}-h=dA$ where $A\in\Omega^1(M)$ is H-invariant by averaging. Let $\nabla_2=\nabla_1+i2\pi A$. The connection ∇_2 is an H-invariant connection on η . $F_{\nabla_2}=F_{\nabla_1}+i2\pi dA=-2\pi ih$ is an H-invariant harmonic 2-form. Since H acts on M as isometries, H acts on $\Omega^2_\pm(M)$ which are the ± 1 -eigenspaces of the Hodge star operator on M. Since M has a positive definite form, $F_{\nabla_2}\in H^2_+(M:R)$ and ∇_2 is a self-dual H-invariant connection on η . Uniqueness, if ∇' is any other H-invariant connection on η with $F_{\nabla_2}=F_{\nabla'}$, then $\nabla'=\nabla_2+iA'$ here $dA'=\mathbf{0}$ and A' is H-invariant. Since M is simply connected A'=df for some real valued function f on M. Thus we have

$$\exp(-if)\nabla_2 \exp(if) = \nabla_2 + idf = \nabla'$$

we complete the proof.

For any manifold M (we treat only compact simply connected 4-manifolds) each cohomology class of $H^2(M:\mathbb{Z})$ corresponds an equivalence class of complex line bundles over M. The SU(2)-bundles over a compact oriented 4-manifold M are classified by the cohomology classes in $H^4(M:\mathbb{Z})$ which are their second Chern classes.

THEOREM 2.3. Suppose that a finite group H acts trivially on $H^2(M:\mathbf{Z})$. Then the reducible self-dual connections on the moduli space \mathcal{M} are fixed by H-action.

Proof. By construction bundle $E \to M$ has its Euler class $c_2(E) = -1$. The bundle E has n distinct splittings where $n = \operatorname{rank} H^2(M: \mathbb{Z})$. So there are complex line bundles η_1, \dots, η_n such that $E = \eta_1 \oplus \eta_1^{-1} = \dots = \eta_n \oplus \eta_n^{-1}$. By theorem 2.2, there is a unique H-invariant self-dual connection ∇_i for each U(1)-bundle η_i such that $c_1(\eta_i) = \frac{i}{2\pi} F_{\nabla_i}$. Then $\nabla^i = \nabla_i \oplus \nabla_i$ $(i = 1, \dots, n)$ are H-invariant reducible self-dual SU(2)-connections on E. The curvature of ∇^i is $F_{\nabla^i} = F_{\nabla_i} \oplus (-F_{\nabla_i})$ $(i = 1, \dots, n)$. The curvatures F_{∇^i} $(i = 1, \dots, n)$ are H-invariant and self-dual. Thus we prove the Theorem.

REMARK [1]. Suppose that the bundle E splits, i.e. $E = \eta \oplus \eta^{-1}$. Let ∇_1 be a self-dual H-invariant connection on $\eta \to M$. The Euler class $c_1(\eta) = \frac{i}{2\pi} F_{\nabla_1} \in H^2(M:\mathbf{Z})$ and the Euler class $c_2(E) = -c_1(\eta)^2$.

By Chern-Weil formula $c_2(E) = \frac{1}{8\pi^2} \operatorname{tr} F_{\nabla} \wedge F_{\nabla}$, where

$$\nabla = \nabla_1 \oplus \overline{\nabla}_1$$

$$c_2(E) = \frac{1}{8\pi^2} \operatorname{tr} \begin{pmatrix} F_{\nabla_1} & \mathbf{o} \\ \mathbf{o} & -F_{\nabla_1} \end{pmatrix} \wedge \begin{pmatrix} F_{\nabla_1} & \mathbf{o} \\ \mathbf{o} & -F_{\nabla_1} \end{pmatrix}$$

$$= \frac{1}{4\pi^2} F_{\nabla_1} \wedge F_{\nabla_1}.$$

Since F_{∇_1} is self-dual we may write locally

$$F_{\nabla_1} = \sum_{i \neq j} F_{ij} dx_i \wedge dx_j$$

= $F_{12} (dx_1 \wedge dx_2 + dx_3 \wedge dx_4) + F_{13} (dx_1 \wedge dx_3 + dx_4 \wedge dx_2)$
+ $F_{14} (dx_1 \wedge dx_4 + dx_2 \wedge dx_3)$

Thus $c_2(E) = \frac{1}{2\pi^2} (F_{12}^2 + F_{13}^2 + F_{14}^2) dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$, where the F_{ij} 's are imaginary number valued functions on M. Hence $-\frac{1}{2\pi^2} \int_M (F_{12}^2 + F_{13}^2 + F_{14}^2) dvol = 1$.

[2]. Suppose that two connections ∇_1 and ∇_2 are *H*-invariant and that $g(\nabla_1) = \nabla_2$ where g is a gauge transformation. Then $h[g(\nabla_1)] = h[\nabla_2] = \nabla_2 = g(\nabla_1) = g[h(\nabla_1)]$. Thus $[g, h](\nabla_1) = \nabla_1$ and the gauge transformation [g, h] belongs to the isotropy group of ∇_1 . If ∇_1 is irreducible, then $[g, h] = \pm 1$. If ∇_1 is reducible, then $[g, h] \in \Gamma_{\nabla_1}$, where $\Gamma_{\nabla_1} = \{g \in \mathcal{F} | g(\nabla_1) = \nabla_1\}$ is the isotropy group of ∇_1 .

3. Self-dual 4-manifolds with positive scalar curvature

We would like to investigate the H-action near the H-invariant reducible connections. Suppose that the bundle E is of a form of a parallel splitting $E = \eta \oplus \eta^{-1}$ with a corresponding reducible connection $\nabla = \nabla_1 \oplus \overline{\nabla}_1$, where ∇_1 is a self-dual H-invariant U(1)-connection on η . Since H acts on each fiber as a complex linear isometry and is parallel, $E = \eta \oplus \eta^{-1}$ is H-parallel splitting. The corresponding Lie algebra bundle is splitted as $\varepsilon \oplus \eta^2$ where ε is the trivial real bundle and $\eta^2 = \eta \otimes \eta$ is a complex line bundle. The isotropy group $\Gamma_{\nabla} = \{g \in \mathcal{F} \mid g \nabla g^{-1} = \nabla\}$ is isomorphic to S^1 . It is clear that the

stabilizer and H commute each other. They act on the Adp by the conjugation,

$$\begin{pmatrix} e^{i\theta} & \mathbf{o} \\ \mathbf{o} & e^{-i\theta} \end{pmatrix} \begin{pmatrix} it & z \\ -z & -it \end{pmatrix} \begin{pmatrix} e^{-i\theta} & \mathbf{o} \\ \mathbf{o} & e^{i\theta} \end{pmatrix} = \begin{pmatrix} it & e^{2\theta i}z \\ -e^{-2\theta i}\overline{z} & -it \end{pmatrix}$$

Thus they act trivially on ε and act by rotation by 2θ on η^2 . The fundamental elliptic complex

$$\mathbf{o} \to \Omega^0(Adp) \stackrel{\nabla}{\underset{\nabla}{\rightleftharpoons}} \Omega^1(Adp) \stackrel{d^{\overset{\bullet}{\square}}}{\longrightarrow} \Omega^2_-(Adp) \to \mathbf{o}$$

is Γ_{∇} and H-invariant. Thus the cohomology groups $H^*(M:Adp)$ are Γ_{∇} and H-representations. According to the bundle splitting, the cohomology groups are also splitted such as $H^*(M:Adp) = H^*(M:R) \oplus H^*(M:\eta^2)$.

Theorem 3.1. If a self-dual reducible connection ∇ is H-invariant, then

- (1) Γ_{∇} and H act trivially on $H^0(M:\mathbf{R})$, $H^1(M:\mathbf{R})$ and $H^2_-(M:\mathbf{R})$.
- (2) Γ_{∇} and H act on $H^*(M:\eta^2)$ by complex multiplication. This makes $H^*(M:\eta^2)$ into complex vector spaces. Suppose that the manifold M is compact, simply connected and has positive definite intersection form. Then $H^0(M:\mathbf{R})=\mathbf{R}$, $H^1(M:\mathbf{R})=\mathbf{o}$ and $H^2_-(M:\mathbf{R})=\mathbf{o}$. By Atiyah-Singer index theorem the fundamental elliptic complex has formal index 5.

COROLLARY 3.2. If M is a compact simply connected manifold with positive definite intersection form, then

- (1) $H^0(M:\mathbf{R}) = \mathbf{R}$, on which Γ_{∇} and H act trivially
- (2) $H^1(M:\eta^2) = \mathbb{C}^{p+3}$ and $H^2(M:\eta^2) = \mathbb{C}^p$ on which Γ_{∇} and H act by complex multiplication.

Furthermore if M is a self-dual manifold with positive scalar curvature, then

(3)
$$H^1(M:\eta^2) = \mathbb{C}^3$$
 and $H^2(M:\eta^2) = \mathbf{o}$ (cf Theorem 3.3)

THEOREM 3.3 ([AHS]). Let M be a compact, self-dual, Riemannian manifold of dimension 4 with positive scalar curvature. Then the second cohomology H^2 of the fundamental elliptic complex

$$\mathbf{o} \to \Omega^0(Adp) \stackrel{\nabla}{\underset{\nabla}{\rightleftharpoons}} \Omega^1(Adp) \stackrel{d^{\nabla}_{-}}{\longrightarrow} \Omega^2_{-}(Adp) \to \mathbf{o}$$

vanishes for all self-dual connections. Moreover the moduli space \mathcal{M} is an H-space.

Proof. Replace the above elliptic complex by a single elliptic operator

$$\nabla^* + d_-^{\nabla} : \Omega^1(Adp) \to \Omega^0(Adp) \oplus \Omega^2_-(Adp)$$

where ∇^* is the L_2 -adjoint of ∇ . We may write this by the Dirac operator

$$\mathcal{D}\colon C^{\infty}(V_{+}\otimes V_{-}\otimes Adp)\to C^{\infty}(V_{-}\otimes V_{-}\otimes Adp)$$

where V_{\pm} are $\pm \frac{1}{2}$ -spinor bundles and $\mathbb{P}(\sigma) = \sum e^{i} \cdot \nabla_{e_{i}} \sigma$ defined by the Riemannian connection and the given connection on Adp, and the Clifford multiplication by \wedge^{1} on V. We may use the same notation \mathbb{P} for its formal adjoint operator.

$$\mathcal{D}^{2} \sigma = \sum_{i} e^{i} \cdot e^{j} \cdot \nabla_{e_{i}} \nabla_{e_{j}} \sigma$$

$$= -\sum_{i} \nabla_{e_{i}} \nabla_{e_{i}} \sigma + \frac{1}{2} \sum_{i} e^{i} \cdot e^{j} \cdot (\nabla_{e_{i}} \nabla_{e_{j}} - \nabla_{e_{j}} \nabla_{e_{i}}) \sigma$$

where $\{e^i\}$ is the local dual basis of the local basis $\{e_i\}$ of the tangent bundle. Since $\nabla^*\nabla = -\sum \nabla_{e_i}\nabla_{e_i}$, and $c^2(R) = \frac{1}{2}\sum e^i e^j (\nabla_{e_i}\nabla_{e_j} - \nabla_{e_i}\nabla_{e_i})$ we obtain the Weitzenbock formula of

$$\mathbb{D}^2: \mathbb{D}^2\sigma = \nabla^*\nabla\sigma + c^2(R)\sigma.$$

Suppose that $D\sigma = 0$, then $D^2\sigma = 0$, and

$$(*) \qquad \mathbf{o} = \int_{M} (\mathcal{P}^{2} \sigma, \sigma) = \int_{M} (\nabla \sigma, \nabla \sigma) + \int_{M} (c^{2}(R)\sigma, \sigma).$$

Here the map

$$c^{2}(R): C^{\infty}(V_{-} \otimes V_{-} \otimes Adp) \xrightarrow{R} C^{\infty}(V_{-} \otimes V_{-} \otimes Adp \otimes \wedge^{2})$$
$$\xrightarrow{c^{2}} C^{\infty}(V_{-} \otimes V_{-} \otimes Adp)$$

is an endomorphism.

The curvature

$$R(V_{-} \otimes V_{-} \otimes Adp) = R(V_{-} \otimes V_{-}) \otimes I + I \otimes R(Adp).$$

Since the connection ∇ on Adp is self-dual, $R(Adp) \in \wedge^2_+(Adp)$. The Clifford multiplication of \wedge^2_+ on V_- is trivial, so $c^2(1 \otimes R(Adp)) = \mathbf{o}$. Since $R(V_- \otimes V_-) \in C^{\infty}(\wedge^2 \otimes \wedge^2)$, only the components in $C^{\infty}(\wedge^2_- \otimes \wedge^2_-)$ act nontrivially on V_- . Since our manifold M is self-dual, the anti-self-dual part of the Weyl curvature tensor $w \equiv \mathbf{o}$. Since M has positive scalar curvature, the scalar $c^2(R) > \mathbf{o}$. From (*) if $\mathbf{D}\sigma = \mathbf{o}$, then $\sigma = \mathbf{o}$.

If M is a self-dual manifold with positive scalar curvature, then the moduli space of gauge equivalence classes of self-dual connections has only singular points p_1, \dots, p_n which come from the bundle splittings. Moreover if we choose a H-invariant metric on M, then the moduli space M is a 5-dimensional manifold with H-action except the n-singular points p_1, \dots, p_n .

THEOREM 3.4. If H acts trivially on the cohomology $H^*(M : \mathbf{Z})$, then H has complex representations horizontally and trivial representation vertically on each cone neighbourhood of the singular points p_1, \dots, p_n .

Proof. By Corollary 3.2 the moduli space has a neighbourhood \mathbf{c}^3/s^1 at each singular point. The *H*-action on the moduli space \mathcal{M} fixes the singular points.

4. Finite group actions on $P_2(\mathbf{C})$

The SU(2)-vector bundles on a compact oriented 4-manifold M come from their classifing bundle, the tautological quaternion line bundle $E \to S^4$. By Hitchin's theorem $\mathbf{P}_2(\mathbf{C})$ and S^4 are the only self-dual

Einstein manifolds with positive scalar curvature. Let $f: \mathbf{P}_2(\mathbf{C}) \to S^4$ be a degree one map. The pull-back bundle $F \equiv f^{-1}(E) \to \mathbf{P}_2(\mathbf{C})$ has the second Chern number $c_2(F) = -1$. We would like to investigate finite group actions on $\mathbf{P}_2(\mathbf{C})$ and on the moduli space of gauge equivalence classes of self-dual connections on $F \to \mathbf{P}_2(\mathbf{C})$. Consider finite group actions on $\mathbf{P}_2(\mathbf{C})$. We introduce a theorem of Bredon concerning cyclic group actions on $\mathbf{P}_2(\mathbf{C})$.

THEOREM 4.1 (BREDON). Let \mathbf{Z}_p be a cyclic group where p is prime. Let \mathbf{Z}_p act on $\mathbf{P}_2(\mathbf{C})$ such that the induced action on the cohomology groups $H^*(\mathbf{P}_2(\mathbf{C}))$ is trivial. Then the fixed point set of \mathbf{Z}_p is one of the followings;

- (I) a set consisting of one point and a disjoint 2-sphere S^2 ,
- (II) a set consisting of three isolated points.

In particular, the fixed point set of \mathbb{Z}_2 is only of type (I).

EXAMPLE 4.2. Consider the action of \mathbb{Z}_p on $\mathbb{P}_2(\mathbb{C})$ defined by $g[z_0, z_1, z_2] = [\omega z_0, z_1, z_2]$ where $\omega = e^{\frac{2\pi i}{p}}$ and g is a generator of \mathbb{Z}_p .

Suppose that $[z_0, z_1, z_2]$ is a fixed point of $\mathbf{Z}_p \cdot g[z_0, z_1, z_2] = [\omega z_0, z_1, z_2] = [\lambda z_0, \lambda z_1, \lambda z_2]$ for some complex number $\lambda \neq \mathbf{o}$. If $z_0 \neq \mathbf{o}$ then $\omega = \lambda \neq -1$ and $[z_0, z_1, z_2] = [1, \mathbf{o}, \mathbf{o}]$, and if $z = \mathbf{o}$, then $\lambda = 1$ and $[z_0, z_1, z_2] = [\mathbf{o}, z_1, z_2]$. This action has one isolated fixed point $p = [1, \mathbf{o}, \mathbf{o}]$ and one fixed complex projective line $\mathbf{P}_1(\mathbf{C})$ in $\mathbf{P}_2(\mathbf{C})$. The normal bundle at p may be identified with the space $\{[1, z_1, z_2] \mid z_1, z_2 \in \mathbf{C}\}$. The action of g on the normal bundle is given by $g[1, z_1, z_2] = [\omega, z_1, z_2] = [1, z_1\omega^{-1}, z_2\omega^{-1}]$. Thus the action g on the normal bundle is a rotation through the angle $\frac{2\pi}{p}(p-1)$. Now consider the fixed complex projective line $\mathbf{P}_1(\mathbf{C}) = S^2$ in $\mathbf{P}_2(\mathbf{C})$. The fiber of the normal bundle at a point $[\mathbf{o}, a, b] \in S^2$ may be identified with the space $\{[z, a, b] \mid z \in \mathbf{C}\}$. The action of g on this fiber is given by $g[z, a, b] = [\omega z, a, b]$ and hence the rotation angle associated to g on S^2 is $\frac{2\pi}{p}$. Since any complex line in $\mathbf{P}_2(\mathbf{C})$ has self intersection at a single point, the Euler number of the normal bundle is one.

For each $g \in \mathbf{Z}_p$ the induced action of g on the cohomology groups $H^*(\mathbf{P}_2(\mathbf{C}): \mathbf{Z})$ is trivial. By Conner and Raymond's theorem there is a U(1)-bundle $\eta \to \mathbf{P}_2(\mathbf{C})$ on $\mathbf{P}_2(\mathbf{C})$ such that the square of the first Chern class $c_1(\eta)^2 = 1$ and \mathbf{Z}_p acts on the bundle $\eta \to \mathbf{P}_2(\mathbf{C})$ as a bundle map. Since SU(2)-bundle are classified by their second

Chern class, the SU(2)-bundle $\eta \oplus \overline{\eta} \to \mathbf{P}_2(\mathbf{C})$ has the second Chern number $c_2(\eta \oplus \overline{\eta}) = -1$ and $\eta \oplus \overline{\eta}$ is isomorphic to the pull back bundle $F = f^{-1}(E)$ obtained by a degree one map $f : \mathbf{P}_2(\mathbf{C}) \to S^4$.

Taubes' existence theorem says that the principal SU(2)-bundle over S^4 has a nonnegative Pontrjagin class and irreducible self-dual connections, and hence any principal SU(2)-bundle on a definite 4-manifold M with the identical Pontrajagin class has irredcible self-dual connections. The SU(2)-bundle $F \to \mathbf{P}_2(\mathbf{C})$ has irreducible connections and the moduli space of gauge equivalence classes of self-dual connections has a dimension 5. In fact the moduli space is an open cone on $\mathbf{P}_2(\mathbf{C})$. The cone point is corresponded by the U(1)-bundle $\eta \to \mathbf{P}_2(\mathbf{C})$. By Theorem 2.3 and Theorem 3.3, we have the following theorem.

THEOREM 4.3. Under the above assumptions

- (I) \mathbf{Z}_p acts on the moduli space when we take a \mathbf{Z}_p -invariant metric on $\mathbf{P}_2(\mathbf{C})$,
 - (II) the cone point of the moduli space is fixed by the \mathbb{Z}_p -action.

References

- [A] M. F. Atiyah, Geometry of Yang-Mills fields, Accad. Naz. Lincei, Pisa, 1979.
 [ADHM] M. F. Atiyah, V. G. Drinfeld, N. J. Hitchin and Y. I. Manin, Construction of instantons, Phys. Lett. 65A(1978), 185-186.
- [AHS] M. F. Atiyan, N. S. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Soc. A362(1978), 425-448.
- [B] G. Bredon, Introduction to compact transformation groups, Pure and Applied Math., 46, Academic press, New York, 1972.
- [B] N. P. Buchdahl, Instantons on CP2, J. Diff. Geo., 24(1986), 19-52.
- [C.R] P. E. Conner and F. Raymond, Holomorphic seifert fiberings, Springer Lecture Notes in Math., 299(1971), 124-204.
- [D] D. Freed and K. Uhlenbeck, Instantons and Four-Manifolds, MSRI publications, Springer-Verlag, 1984.
- [H] N. J. Hitchin, Kahlerian twistor spaces, Proc. Longon Math. Soc. (3) 43(1981), 133-150.
- [S.T] I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, Princeton Uni. Press (1969), 335-365.
- [T] C. H. Taubes, Self-dual Yang-Mills connections on nonself-dual 4-manifolds, J. Diff. Geo. 17(1982), 139-170.

Department of Mathematics Ewha Womans University Seoul 120-750, Korea