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RIGIDITY OF GRADIENT SHRINKING AND EXPANDING

RICCI SOLITONS

Fei Yang and Liangdi Zhang

Abstract. In this paper, we prove that a gradient shrinking Ricci soliton
is rigid if the radial curvature vanishes and the second order divergence
of Bach tensor is non-positive. Moreover, we show that a complete non-
compact gradient expanding Ricci soliton is rigid if the radial curvature
vanishes, the Ricci curvature is nonnegative and the second order diver-
gence of Bach tensor is nonnegative.

1. Introduction

A complete Riemannian manifold (Mn, g) is called a gradient Ricci soliton
if there exists a smooth function f : Mn → R such that the Ricci tensor Ric
of the metric g satisfies the equation

(1.1) Ric+∇2f = λg

for some constant λ ∈ R. The soliton is shrinking, steady or expanding Ricci
soliton if λ > 0, λ = 0 or λ < 0, respectively.

The classification of gradient shrinking Ricci solitons under some conditions
on the Weyl tensor and its derivatives has been a subject of interest for many
people in recent years. M. Eminenti, G. La Nave and C. Mantegazza [9] proved
that an n-dimensional compact shrinking Ricci soliton with vanishing Weyl
tensor is a finite quotient of Sn. The work of P. Petersen and W. Wylie [13]
implied that a gradient shrinking Ricci soliton is a finite quotient of Rn, Sn−1×
R, or Sn if the Weyl tensor vanishes and

∫

M |Ric|2e−fdvolg < ∞. This integral
assumption was proven to be true for gradient shrinking Ricci solitons (see
[11, Theorem 1.1]). Moreover, H. D. Cao and Q. Chen [4] proved that an
n-dimensional complete non-compact locally conformally flat gradient steady
Ricci soliton is either flat or isometric to the Bryant soliton.

M. Fernández-López and E. Garćıa-Rı́o [10] proved that a compact Ricci
soliton is rigid if and only if it has harmonic Weyl tensor. In [11], O. Munteanu
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and N. Sesum [11] proved that a complete non-compact gradient shrinking Ricci
soliton is rigid if it has harmonic Weyl tensor.

H. D. Cao and Q. Chen [3] studied the classification of Bach-flat gradient
shrinking Ricci solitons. They proved that a 4-dimensional complete Bach-flat
(Bij = 0) gradient shrinking Ricci soliton is either Einstein or a finite quotient
of R4 or S

3 × R. More generally, they proved that an n-dimensional (n ≥ 5)
complete Bach-flat (Bij = 0) gradient shrinking Ricci soliton is either Einstein,
a finite quotient of Gaussian shrinking soliton R

n or Nn−1 × R with N being
an Einstein manifold of positive scalar curvature. Moreover, H. D. Cao, G.
Catino, Q. Chen, C. Mantegazza and L. Mazzieri [2] proved that a complete
Bach-flat gradient steady Ricci soliton with positive Ricci curvature such that
the scalar curvature attains its maximum at some interior point is isometric
to the Bryant soliton. They also proved that a 3-dimensional steady gradient
Ricci soliton with divergence-free Bach tensor is either flat or isometric to the
Bryant soliton up to a scaling factor.

G. Catino, P. Mastrolia and D.D. Monticelli [6] proved that a gradient
shrinking Ricci soliton is rigid if div4W = 0 (div4W := ∇k∇j∇i∇lWijkl).
In particular, they showed that a 3-dimensional gradient steady Ricci soliton
with div3C = 0 (div3C := ∇k∇j∇iCijk) is isometric to a finite quotient of
R

3 or the Bryant soliton up to scaling. Moreover, an expanding Ricci soliton
with div3C = 0 and Ric ≥ 0 is rotationally symmetric. They showed that
div4W = 0 is equivalent to div3C = 0 if n ≥ 4 and div2B = 0 is equivalent to
div3C = 0 if n = 3. We will see that last equivalence does not always hold for
n ≥ 4 in Section 2.

For a Ricci soliton, we say that the radial curvature vanishes if Rm(·,∇f)∇f
= 0 (see [12]). A Ricci soliton is called radially flat if sec(E,∇f) = 0 (see [12]).
A gradient soliton is rigid if it is of the type Nn−k ×Γ R

k, where Γ acts freely
on N and by orthogonal transformations on R

k with N being Einstein with
Einstein constant λ and R

k the Gaussian soliton with f = λ
2 |x|2.

Our aim in this paper is to prove that a gradient shrinking Ricci soliton
is rigid if div2B ≤ 0 and Rm(·,∇f)∇f = 0. Moreover, a complete non-
compact gradient expanding Ricci soliton is rigid if Ric ≥ 0, div2B ≥ 0 and
Rm(·,∇f)∇f = 0. These results are generalizations of the classification of
Bach-flat shrinking gradient Ricci solitons (see [3]) and the classification of
3-dimensional expanding gradient Ricci soliton with div3C = 0 (see [6]), re-
spectively.

The purpose of this article is to prove the following rigid theorems.

Theorem 1.1. Let (Mn, f, g) (n ≥ 5) be a complete gradient shrinking Ricci

soliton. If the radial curvature vanishes and div2B ≤ 0, then the soliton is a

finite quotient of Nn−k ×R
k (0 ≤ k ≤ n), the product of an Einstein manifold

N with positive scalar curvature and the Gaussian shrinking soliton R
k.

Theorem 1.2. Let (Mn, f, g) (n ≥ 5) be a complete non-compact gradient

expanding Ricci soliton. If the radial curvature vanishes, Ric ≥ 0 and div2B ≥



RIGIDITY OF GRADIENT SHRINKING AND EXPANDING RICCI SOLITONS 819

0, then the soliton is a finite quotient of Nn−k × R
k (0 ≤ k ≤ n), the product

of an Einstein manifold N and the Gaussian expanding soliton R
k.

We arrange this paper as follows. In Section 2, we give the notations needed
in this paper. In Section 3, we prove Theorems 1.1-1.2.

2. Preliminaries

On an n-dimensional Riemannian manifold (Mn, g) (n ≥ 4), the Weyl tensor
is given by

Wijkl = Rijkl −
1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk),

the Cotton tensor by

Cijk = ∇iRjk −∇jRik − 1

2(n− 1)
(gjk∇iR− gik∇jR).

In fact,

(2.2) Cijk = −Cjik, gijCijk = gikCijk = 0,

(2.3) Cijk = −n− 2

n− 3
∇lWijkl .

The covariant 3-tensor Dijk is defined as

Dijk =
1

n− 2
(Rjk∇if −Rik∇jf) +

1

2(n− 1)(n− 2)
(gjk∇iR− gik∇jR)

− R

(n− 1)(n− 2)
(gjk∇if − gik∇jf),

and the Bach tensor is given by

Bij =
1

n− 2
(∇kCkij +RklWikjl).

Proposition 2.1 (H. D. Cao and Q. Chen [3]). If (Mn, f, g) (n ≥ 4) is a

complete gradient Ricci soliton satisfying (1.1), we have

Dijk = Cijk +Wijkl∇lf.(2.4)

|D|2 =
1

(n− 2)2
(|Rjk∇if −Rik∇jf |2 −

2

n− 1
|1
2
∇R−R∇f |2).(2.5)

∇jBij =
n− 4

(n− 2)2
CijkRjk.(2.6)

Remark 2.1. We study the relation between div2B and div3C here. Calculating
directly, we have

∇j∇iBij =
1

n− 2
∇j∇i(∇kCkij +RklWikjl)
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=
1

n− 2
(∇j∇i∇kCkij +∇iRkl∇jWikjl

+∇jRkl∇iWikjl +∇j∇iRklWikjl +Rkl∇j∇iWikjl).

Note that

∇iRkl∇jWikjl = −n− 3

n− 2
∇iRklCkil,

and

∇jRkl∇iWikjl = −n− 3

n− 2
∇jRklCljk,

we obtain

∇iRkl∇jWikjl +∇jRkl∇iWikjl

= − 2(n− 3)

n− 2
∇iRklCkil =

n− 3

n− 2
|C|2.

Moreover, we have

∇j∇iRklWikjl=
1

2
∇j(∇iRkl −∇kRil)Wikjl=

1

2
∇jCiklWikjl=−1

2
∇lCijkWijkl ,

and

Rkl∇j∇iWikjl = −n− 3

n− 2
Rkl∇jCljk =

n− 3

n− 2
Rjk∇iCijk .

Therefore, the relation between div3C :=∇j∇i∇kCkij and div2B :=∇i∇jBij

is

(n− 2)div2B = div3C +
n− 3

n− 2
|C|2 − 1

2
∇lCijkWijkl +

n− 3

n− 2
Rjk∇iCijk.

We can see that div2B = 0 is equivalent to div3C = 0 in dimension 3 and it
does not always hold for n ≥ 4.

3. Proof of main results

Before we prove Theorems 1.1 and 1.2, we present a useful formula.

Lemma 3.1. Let (Mn, f, g) (n ≥ 4) be a gradient Ricci soliton satisfying (1.1).
Then we have

(3.7) ∇jBij∇if =
n− 4

2(n− 2)2
(
|∇R|2
2n− 2

− R〈∇R,∇f〉
n− 1

− 2Rijkl∇ifRjk∇lf).

Proof. By direct computations, we have

∇jBij∇if =
n− 4

(n− 2)2
CijkRjk∇if

=
n− 4

2(n− 2)2
Cijk(Rjk∇if −Rik∇jf)

=
n− 4

2(n− 2)
CijkDijk

=
n− 4

2(n− 2)
(|D|2 −DijkWijkl∇lf),(3.8)
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where we used (2.6) in the first equality. In the second and third equalities, we
used (2.2). Moreover, we used (2.5) in the last equality.

Since Ric(∇f, ·) = 1
2∇R, we have

Wijkl∇lf = Rijkl∇lf − 1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)∇lf

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk)∇lf

= Rijkl∇lf − 1

2(n− 2)
(gik∇jR− gjk∇iR)

+
1

n− 2
(Rjk∇if −Rik∇jf) +

R

(n− 1)(n− 2)
(gik∇jf − gjk∇if).

Hence,

DijkWijkl∇lf

(3.9)

=
1

n− 2
(Rjk∇if −Rik∇jf)Wijkl∇lf

=
2

n− 2
Wijkl∇lfRjk∇if

=
2

n− 2
Rijkl∇lfRjk∇if − 1

(n− 2)2
(
|∇R|2

2
−R〈∇R,∇f〉)

+
2

(n− 2)2
(|Ric|2|∇f |2 − |∇R|2

4
) +

2R

(n− 1)(n− 2)2
(
〈∇R,∇f〉

2
−R|∇f |2)

=
2

n− 2
Rijkl∇lfRjk∇if − 1

(n− 2)2
|∇R|2 + n

(n− 1)(n− 2)2
R〈∇R,∇f〉

+
2

(n− 2)2
|Ric|2|∇f |2 − 2

(n− 1)(n− 2)2
R2|∇f |2.

From (2.5), we have

|D|2 =
1

(n− 2)2
(|Rjk∇if −Rik∇jf |2 −

2

n− 1
|1
2
∇R −R∇f |2)

(3.10)

=
2

(n− 2)2
|Ric|2|∇f |2 − 1

2(n− 2)2
|∇R|2 − 2

(n− 1)(n− 2)2
R2|∇f |2

+
2

(n− 1)(n− 2)2
R〈∇R,∇f〉 − 1

2(n− 1)(n− 2)2
|∇R|2

=
2

(n− 2)2
|Ric|2|∇f |2 − n

2(n− 1)(n− 2)2
|∇R|2

− 2

(n− 1)(n− 2)2
R2|∇f |2



822 F. YANG AND L. ZHANG

+
2

(n− 1)(n− 2)2
R〈∇R,∇f〉.

Combining (3.9) and (3.10), we obtain

|D|2 −DijkWijkl∇lf

=
1

2(n− 1)(n− 2)
|∇R|2 − 1

(n− 1)(n− 2)
R〈∇R,∇f〉

− 2

n− 2
Rijkl∇ifRjk∇lf.(3.11)

Plugging (3.11) into (3.8), (3.7) follows. �

We are ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We divide the arguments into two cases:
• Case 1: ∇f = 0 on some non-empty open set. Since every complete Ricci

soliton is real analytic in suitable coordinates (see [1] and [7, Theorem 2.4]),
we have ∇f ≡ 0 on Mn. It follows that Mn is Einstein.

• Case 2: The set {p ∈ M |∇f(p) 6= 0} is dense in M .
Since Rm(·,∇f)∇f = 0, 〈∇R,∇f〉 = 2Ric(∇f,∇f) = 0. By Lemma 3.1,

we obtain

(3.12) ∇jBij∇if =
n− 4

4(n− 1)(n− 2)2
|∇R|2 ≥ 0.

Let φ(t) = s−t
s on [0, s] and φ = 0 on t ≥ s for any fixed s > 0.

Since f is of quadratic growth (see [5]), e−fφ(f) has compact support for
any fixed s > 0. Integrating by parts, we have

(3.13)

∫

M

∇jBij∇ife
−fφ(f)=

∫

M

∇i∇jBije
−fφ(f)+

∫

M

∇jBij∇ife
−fφ′(f).

Note that φ ≥ 0, φ′ ≤ 0 and ∇i∇jBij ≤ 0. Combining (3.12) with (3.13),
we have

∫

M

∇jBij∇ife
−fφ(f) = 0.

From (3.12), we obtain ∇R = 0 on the compact set {x ∈ M : f(x) ≤ s}. By
taking s → +∞, ∇R = 0 on M . Therefore, R is a constant on M .

It follows from Rm(·,∇f)∇f = 0 that sec(E,∇f) = 0. Note that a gradient
Ricci soliton is rigid if it is radially flat and has constant scalar curvature
(see [12, Theorem 1.2]). Moreover, every gradient shrinking Ricci soliton has
nonnegative scalar curvature (see [8, Corollary 2.5]). In this case, we obtain
that the soliton is a finite quotient of Nn−k×R

k (1 ≤ k ≤ n), the product of an
Einstein manifold N with positive scalar curvature and the Gaussian shrinking
soliton R

k.
This completes the proof of Theorem 1.1. �
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Proof of Theorem 1.2. We divide the arguments into two cases:
• Case 1: ∇f = 0 on some non-empty open set. Since every complete Ricci

soliton is real analytic in suitable coordinates (see [1] and [7, Theorem 2.4]),
we have ∇f ≡ 0 on Mn. It follows that M is Einstein.

• Case 2: The set {p ∈ M |∇f(p) 6= 0} is dense in M .
Recall that φ(t) = s−t

s on [0, s] and φ = 0 on t ≥ s for any fixed s > 0. Since

Ric ≥ 0, −f is of quadratic growth (see [2, Lemma 5.5]). Therefore, efφ(−f)
has compact support for any fixed s > 0. Integrating by parts, we obtain

(3.14)

∫

M

∇jBij∇ife
fφ(−f)=−

∫

M

∇i∇jBije
fφ(−f)+

∫

M

∇jBij∇ife
fφ′(−f).

Note that φ ≥ 0, φ′ ≤ 0 and ∇i∇jBij ≥ 0. Combining (3.12) with (3.14),
we have

∫

M

∇jBij∇ife
−fφ(f) = 0.

Hence, ∇R = 0 on the compact set {x ∈ M | − f(x) ≤ s}. Taking s → +∞,
we have R is a constant on M .

It follows from Rm(·,∇f)∇f = 0 that sec(E,∇f) = 0. Note that a gradient
Ricci soliton is rigid if it is radially flat and has constant scalar curvature (see
[12, Theorem 1.2]). In this case, we obtain that the soliton is a finite quotient
of Nn−k × R

k (1 ≤ k ≤ n), the product of an Einstein manifold N and the
Gaussian shrinking soliton R

k.
This completes the proof of Theorem 1.2. �
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