DOI QR코드

DOI QR Code

A BIFURCATION PHENOMENON FOR ONE-DIMENSIONAL MINKOWSKI-CURVATURE EQUATION

  • Lee, Yong-Hoon (Department of Mathematics, Pusan National University) ;
  • Yang, Rui (School of Mathematics and Statistics, Central South University)
  • Received : 2021.05.12
  • Accepted : 2021.06.10
  • Published : 2021.09.25

Abstract

In this paper, applying the bifurcation method and topological analysis, we investigate the global structures of solutions for one-dimensional Minkowski-curvature problems under certain behavior of nonlinear term near zero.

Keywords

Acknowledgement

This work was financially supported by a 2-Year Research Grant of Pusan National University.

References

  1. R. Bartnik, L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys. 87 (1982) 131-152. https://doi.org/10.1007/BF01211061
  2. A.E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math. 66 (1982) 39-56. https://doi.org/10.1007/BF01404755
  3. C. Gerhardt, H-surfaces in Lorentzian manifolds, Commun. Math. Phys. 89 (1983) 523-553. https://doi.org/10.1007/BF01214742
  4. C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces, Math. Nachr. 283 (2010) 379-391. https://doi.org/10.1002/mana.200910083
  5. C. Bereanu, P. Jebelean, J. Mawhin, Multiple solutions for Neumann and periodic problems with singular φ-Laplacian, J. Funct. Anal. 261 (2011) 3226-3246. https://doi.org/10.1016/j.jfa.2011.07.027
  6. C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities, Calc. Var. 46 (2013) 113-122. https://doi.org/10.1007/s00526-011-0476-x
  7. I. Coelho, C. Corsato, F. Obersnel, P. Omari, Positive solutions of the Dirichlet problem for one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud. 12 (2012) 621-638. https://doi.org/10.1515/ans-2012-0310
  8. C. Bereanu, P. Jebelean, P.J. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal. 264 (2013) 270-287. https://doi.org/10.1016/j.jfa.2012.10.010
  9. C. Bereanu, P. Jebelean, P.J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal. 265 (2013) 644-659. https://doi.org/10.1016/j.jfa.2013.04.006
  10. C. Bereanu, P. Jebelean, J. Mawhin, Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces, Proc. Amer. Math. Soc. 137 (2009) 161-169. https://doi.org/10.1090/S0002-9939-08-09612-3
  11. R. Ma, H. Gao, Y. Lu, Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal. 270 (2016) 2430-2455. https://doi.org/10.1016/j.jfa.2016.01.020
  12. G. Dai, Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space, Calc. Var. 55 (2016) 1-17. https://doi.org/10.1007/s00526-015-0942-y
  13. G. Dai, J. Wang, Nodal solutions to problem with mean curvature operator in Minkowski space, Differential and Integral Equations 30 (2017) 463-480.
  14. B.H. Im, E.K. Lee, Y.H. Lee, A global bifurcation phenomenon for second order singular boundary value problems, J. Math. Anal. Appl. 308 (2005) 61-78. https://doi.org/10.1016/j.jmaa.2004.10.054
  15. P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971) 487-513. https://doi.org/10.1016/0022-1236(71)90030-9
  16. H. Asakawa, Nonresonant singular two-point boundary value problems, Nonlinear Anal. 44 (2001) 791-809. https://doi.org/10.1016/S0362-546X(99)00308-9
  17. R. Kajikiya, Y.H. Lee, I. Sim, One-dimensional p-Laplacian with a strong singular indefinite weight, I. Eigenvalue, J. Differential Equations 244 (2008) 1985-2019. https://doi.org/10.1016/j.jde.2007.10.030
  18. R. Kajikiya, Y.H. Lee, I. Sim, Bifurcation of sign-changing solutions for one-dimensional p-Laplacian with a strong singular weight; p-sublinear at ∞, Nonlinear Anal. 71 (2009) 1235-1249. https://doi.org/10.1016/j.na.2008.11.056
  19. R. Yang, Y.H. Lee, Bifurcation of positive radial solutions for a prescribed mean curvature problem on an exterior domain, Advances in Differential Equations 25 Number 3-4 (2020) 161-190.
  20. R. Yang, Y.H. Lee, and I. Sim, Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain, J. Differential Equations 268 (2020) 4464-4490. https://doi.org/10.1016/j.jde.2019.10.035
  21. J.K. Hunter, B. Nachtergaele, Applied Analysis, World Scientific, London 2001.
  22. G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958.
  23. R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal. 71 (2009) 4364-4376. https://doi.org/10.1016/j.na.2009.02.113
  24. H. Luo, R. Ma, The existence and application of unbounded connected components, J. Appl. Math. 2014 (2014), 7 pp.
  25. E.N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1974), 1069-1076. https://doi.org/10.1512/iumj.1974.23.23087
  26. R. Yang, I. Sim, and Y.H. Lee, $\frac{{\pi}}{4}$-tangentiality of solutions for one-dimensional Minkowski-curvature problems, Advances in Nonlinear Analysis 9(1) (2020) 1463-1479. https://doi.org/10.1515/anona-2020-0061