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PERELMAN TYPE ENTROPY FORMULAE AND
DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED
DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER
CURVATURE DIMENSION CONDITION

YUu-ZHAO WANG

ABSTRACT. We prove Perelman type W-entropy formulae and differen-
tial Harnack estimates for positive solutions to weighed doubly nonlinear
diffusion equation on weighted Riemannian manifolds with CD(—K,m)
condition for some K > 0 and m > n, which are also new for the non-
weighted case. As applications, we derive some Harnack inequalities.

1. Introduction and main results

A weighted Riemannian manifold (M, g, du) is an n-dimensional Riemannian
manifold (M,g) with a smooth measure dy := e~/ dV, where f is a smooth
function on M, dV is the volume measure of M. The weighted Riemannian
manifold carries a natural analogous Ricci curvature, that is, the m-Bakry-
Emery Ricci curvature, which is defined by
(1.1) Ric" := Ric + VV f — M

m—n

In particular, when m = oo, Ric}® = Ricy := Ric + VVf is the classical
Bakry-Emery Ricci curvature, which is introduced in the study of diffusion
processes and functional inequalities (see [1] and also [2] for a comprehensive
introduction), and then it is extensively investigated in the theory of the Ricci
flow and optimal transport theory, when m = n if and only if f is a constant
function. There is also a natural analogous Laplacian, namely, the so-called
weighted Laplacian (also called the f-Laplacian, drifting Laplacian or Witten
Laplacian in the literature), denoted by Ay = A—V f-V, which is a self-adjoint
operator in L?(M,dy).
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There is an enhanced Bochner formula with respect to Ay (see p. 383 in
Villani’s book [27]):

1
§Af|v¢\2 — V¢ - VAsy
= |VV9|? + Ricy (Ve Vi)

2
(1.2) _ (App)” + Ric} (Vi), Vo) + ‘va - (%)g

2
m

1 1 n 2
+(—) <A¢+Vf-v¢> .
n m m—n

For convenience, one can reformulate the Bochner formula in terms of the
Bakry-Emery’s I'y formalism. For a given operator Ay, define the associated
T" operator by

1
Do, ¥) = S[Ar(pv) — 9Asp — ¥As0] = Vo - V.
The T’y operator is defined by

Do, ) 1= 5[0 (6, 0) ~ T, Agy) ~ T8, Age)].

In particular,

1
Ta(y) :=Ta(9,¥) = SA;|VY[* = VY- VA,
By (1.2), when Ric}" > —Kg and m > n or m < 0, we have

2
(13) O

If (1.3) is valid, we say that (M, g, du) satisfies the curvature-dimensional con-
dition CD(—K,m), which is equivalent to the m-Bakry-Emery Ricci curvature
bounded below by —K.

In recent years, people study geometric analysis problems on the weighted
Riemannian manifolds, for instance, gradient estimates and Liouville theorems
for symmetric diffusion operators Ay [10], some comparison geometry for the
Bakry-Emery Ricci tensor [32], eigenvalue estimates [5] and splitting theorems
[4] etc.. In his 2002 seminal paper [24], Perelman introduced the W-entropy

Wig, f,7) = / (r(R+IVF2) + f = n)udv
M
and proved its monotonicity

d 1 2
(1.4) d*W(Qva T) = 27’/ ‘Rij +ViV,f — —gij| vdV >0,
t M 2T

where u = (477) "% e~/ satisfies the conjugate heat equation coupled with Ricci
flow,

d,g = —2Ric, Of = —Af+|Vf?—R+ % O = —1.
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Later L. Ni [22,23] obtained the W-entropy monotonicity formula for the linear
heat equation on Riemannian manifolds with nonnegative Ricci curvature.

d 1 2
(1.5) %W(f’ t) = —275/ <’vivjf — % + Rz’jfifj) udV,
M

where u = (47t)"2 e~/ is a positive solution to the heat equation dyu = Au
with [, udV =1 and W(f,t) is defined by

W(f,t) := /M <t|Vf|2 +f—n)udv.

In [11], X.-D. Li established a Perelman type W-entropy formula for the weight-
ed linear heat equation on the weighted Riemannian manifolds with C'D(0, m)
condition.

Theorem A (Li [11]). Let (M™,g,du) be a weighted Riemannian manifold
and u be a positive solution to the weighted heat equation Oyu = Aju and
fM udp = 1. Define the weighted W-entorpy

—v

e

— 2 _ —
Wi (v,t) := /M (t\Vv| + v m)u dp, u= Gty

then we have

d 1
(16)  GWint =~ [ (\vivjv—gu
M

2t

2t m—n\>
- / (VfonJr) wdp.
m—-n Ju 2t

In particular, if CD(0,m) condtion holds, then Wy (v, t) is monotone decreasing
along the weighed heat equation. When m = n, f = const., (1.6) reduces to
(1.5).

In [12,13], when n < m € N, S. Li and X.-D. Li gave a direct proof and
natural geometric interpretation of the W-entropy formula (1.6) by using the
warped product approach. Moveover, they extend the W-entropy formula to
the weighted heat equation on the weighted compact Riemannian manifolds
with time dependent metrics and potentials. More recently, in [18], they in-
troduced Perelman’s W-entropy along geodesic flow on the Wasserstein space
over Riemannian manifolds. For further related study, see [14-17].

It is natural to study the entropy formulae for nonlinear equations, the au-
thors obtained the Perelman type entropy formulae for p-heat equation [9] and
porous medium equation [21] on Riemannian manifold with nonnegative Ricci
curvature. Combining the analogous methods in [9], [21] and [11], Wang-Yang-
Chen [31] and Huang-Li [8] proved the entropy formulae for the weighted p-
Laplacian heat equation and weighted porous medium equation with C'D(0, m)
condition, respectively. In [30], the authors got the W-entropy formula for
positive solutions to the doubly nonlinear diffusion equation on the closed Rie-
mannian manifold with nonnegative Ricci curvature.

2
+ Ric"(Vo, Vv)) udp
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Theorem B (Wang-Chen [30]). Let (M™, g) be a closed Riemannian manifold
and u be a positive solution to the doubly nonlinear diffusion equation

(1.7) Ou = Ap(u”).
Set v = %ub and define Perelman-type W-entropy

p 1
Wy (v,t) := t“H/ <(b—|— 1)ﬂ _et ) vudV.
M v t

Then we have

d a p_ a 2 _
&Wp(v,t) = 7pbt +1 /M <”w2 1vivjv -+ %aij ) + wP 2R¢j’U¢Uj> vudV
2
(1.8) —pt‘”‘l/ (bApv—i— g) vudV,
M 4
where b =y — p%l, a= nb(p"fbl)ﬂg, w=|Vv|?, AY = g¥ + (p - 2)2 and a;;

is the inverse of A%.

In this paper, we focus on the weighted doubly nonlinear diffusion equation
(WDNE for short)

(1.9) du= A, p(u?) = divy (|[Vu[P2VaY),

where v > 0, p > 1, f € C®(M), A, s and div; := efdiv(e™/-) denote the
weighted p-Laplacian operator and weighted divergence operator, respectively.
WDNE has the rich physical background and appears in several models, in-
cluding non-Newtonian fluids, glaciology and turbulent flows in porous media.
From a mathematical point of view such as in [26], it can be viewed as a gen-
eralization of the weighted heat equation (p = 2,7 = 1), the weighted porous
medium equation (p = 2,y > 1), fast diffusion equation (p = 2,7 < 1) and
the weighted parabolic p-Laplacian equation (y = 1). Taking the pressure
transform

Tob 1
1.1 = = —_ J—
(1.10) o(w) = gul b=y,

then the equation (1.9) satisfies
(1.11) O = bvAp jv + |VolP.

Inspired by the previous work [8,9,11,21,28,30,31], the first result in this pa-
per is the Perelman type W-entropy formula for the weighted doubly nonlinear
diffusion equation on closed weighted Riemannian manifolds with CD(—K,m)
condition for K > 0 and m > n.

Theorem 1.1. Let (M, g,du) be a closed weighted Riemannian manifold with
CD(—K,m) condition for K > 0 and m > n. Let u be a positive solution to
(1.9) and v satisfy (1.11). Define the weighted Perelman-type WW-entropy

(1.12)
» .
[(b+1)|vs|—( ! —|—UK>] vudp, bzv—L > 0.

Wk (v,t) := O’KﬂK/M Br o -1
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Then we have
(1.13)

d
a ¢
g Ve 1)

< —phoBx [ U\Wlf"?viwﬁ—"
M : mb

2
M + [VoP4([Ric} + Kg)(Vo, V’U):| vudp

Qi

_ 2 b p—2 _ _ o\ K 2
pUKBK/M |:(bAp1f’U+77K) +m_n<\V1}\ Vo-Vf—(m n)mb) vudy,

where a = and AV = gl + (p — 2)“@—;"2 is the inverse matriz of

#bmp
aij, D = b+1, K = bupMX 0T)(|V’U|p %), o = (eP'sinh(Dt))?, Bx =
% and N = uﬁ. Moreover, if CD(—K,m) holds, then Wi (v,t) is
monotone decreasing along WDNE (1.9).

Corollary 1.2. Let K =0, o9 =t%, o =t, no = ¢, and

P
((b+1)|Vv _a—:l) vu dps.

(1.14) Wo(v,t) = t‘”l/

M v
Then we get
(1.15)
d
— t
dtWO(’U’ )
= —pbta"'l/ “Vu\p V.V v+ bta” + \Vv\zp*élRiC;"(Vv,Vv)} vudp

o B O e (e TR om—m) -2 | vudn.
M P t m-—n mbt

Remark 1.3. When K > 0, m = n and f = const., W-entropy formula (1.13) is
new even for doubly nonlinear diffusion equation (1.7) on the closed Riemannian
manifold. When K =0, m = n and f = const., W-entropy (1.15) is just (1.8).

Theorem 1.4. Let (M™,g) be a closed n-dimensional Riemannian manifold
with Ricci curvature bounded below, i.e., Ric > —Kg, K > 0. Let u be a smooth
positive solution to (1.7) and v = %ub, For any b = v — p—il > 0, define the

Perelman-type W-entropy
p 1
[(b+ Vol <+ UK)] vudv.
v Brk ok

(1.16) Wk (v,t) := UKBK/

M

Then we have

d 2
*WK(U,t) < —pbO’KﬁK/ ‘|Vv|p‘2Vva+ U—Kaij vudV
dt M A

nb

(1.17) — pUKﬂK/ (b|Vv[**~*(Ric + Kg)(Vov, Vo) + (bA,v + 17;()2 vudV,
M
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_ nb _ K T _ pbK p—2
where a = T rESyEet D = 75, K = 5~ bupMX[O7T)|VU‘ v,
ox = (ePtsinh(Dt))*, Bx = % and ng = %, Moreover, if

Ric > —K for K > 0, then Wk (v,t) is monotone decreasing along the doubly
nonlinear diffusion equation (1.7).

Remark 1.5. When K > 0 and v = 1, our results are even new for the weighted
parabolic p-Laplacian equation on the weighted Riemannian manifolds. See
details in Corollary 3.2. When K > 0 and p = 2, W-entropy formulae have
been obtained by the author in [29].

In the second part of this paper, we study the differential Harnack inequality
for WDNE on wighted Riemannian manifold. In the classic paper [20], Li-Yau
proved differential Harnack inequality (Li-Yau estimate) for positive solution
to the heat equation on an n-dimensional complete Riemannian manifold with
Ric > —Kg, where K is a positive constant, that is, for all o > 1

|Vul? Ut a?

n
—a— < —nK +a%—.
u? au_2(04—1)n ta 2t

In 1993, Hamilton [6] derived another gradient estimate
2
|V12‘| _ethﬂ < e4Ktﬁ_
U u 2t
In 2011, Li-Xu [19] generalized Li-Yau type estimate,

|Vul? (1 sinh(Kt)cosh(Kt)Kt) u _nK
. a2

<—(1+ coth(K?) ).
sinh? (Kt) u ~ 2 ( coth( )>

u

Recently, B. Qian [25] extended Li-Yau and Hamilton type estimates under
some proper assumptions of «(t) and o(t).

Vel o™ < o(0).

(1.18)

It is natural to prove differential Harnack esimtates for nonlinear equations.
In [7,21], various differential Harnack estimates for porous medium equation
on Riemannian manifolds with Ricci curvature bounded below are derived. In
[30], the author obtained a sharp Li-Yau estimate for doubly nonlinear diffu-
sion equation (1.7) on compact Riemannian manifold with nonnegative Ricci
curvature,
(1.19) ol? v o

v v t

_ 2. b — 1 _ b
wherev—%u,b—y—ﬁ>0anda—m.
and [33], the authors got Li-Yau type and elliptic gradient estimates for doubly
nonlinear equations on Riemannian manifold with Ricci curvature bounded

below, respectively.

In recent papers [3]



ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES 1545

Motivated by previous works, especially in [25] by B. Qian, we obtain various
global differential Harnack estimates for WDNE on closed weighted Riemanian
manifolds with curvature dimensional condition CD(—K,m).

Now we make two assumptions on any positive function o(t) € C1(M) (see
[25]).

(A1) For any ¢t > 0, o(t) > 0, ¢/(t) > 0, lim () = 0 and lim 22 = 0;
t—0 =00’ (®)

(A2) For any T > 0, (U(;)Q is continuous and integrable on the interval [0, T').
Theorem 1.6. Let (M"™, g,du) be a closed weighted Riemannian manifold with

CD(—K,m) condition for K > 0. Let v(x,t) be a positive solution to equation
(1.11). For any b > 0, we have

[Vu[? Ut
1.20 — —a(t)— < p(1).
(1.20) e <o)
Here
2K [*
alt)y=14+ —/ o(s)ds,
o
(1.21) F2O_ . 3 [ (o))
W):Fm—“/ o(s)ds + — [ 223 g
c Jo do o o(s)
and o(t) is any function satisfying the assumptions (Al) and (A2),
a= mb(pnibl)-&-p’ K= % sup (U|V1}|p72),

M x(0,T)

By choosing different o (), we can obtain various differential Harnack in-
equalities, which are also new for the weighted doubly nonlinear diffusion equa-
tion.

Corollary 1.7. Let (M, g,du) be a closed weighted Riemannian manifold with
CD(—K,m) condition. Let v be a smooth positive solution to (1.11). Then we
have the following estimates:

(1) Linearized Li-Xu-Qian type: o(t) = t° for g > 1,

|VolP 2Kt \ vy g2 1 — Kt
1.22 B I R (77 K 7)
(1.22) v R R VT Ry S
In particular, B =2, o(t) = t2,
|Vo|P 2—\ v /1 1—2
1.23 iy - R (f K+-K t).
( ) v + 3 v “ t TR 3

(2) Li-Xu type: o(t) = sinh?(Kt)

P : 7 = T
(1.24) [VolP (1 n sinh(K7) COQShLKt) Kt) vy
v sinh”(Kt)

< *?(1 + coth(?t)).

(%
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(3) Baudoin-Vatamanelu-Qian type: o(t) = e~ hit (1—e 5 1)8 with B > 1,

E7a 4Kt
(1.25) N SRV B*Ka il
v v T 2(02 - 1) B
In particular, 8 =2, o(t) = e*%m(l — @*ZTE)?
P = Ton oKt
(1.26) [Volp v 2Ka e
v v 3 et

Remark 1.8. (1) When p = 2, v = 1 and f = const., the results in Theorem
1.6 and Corollary 1.7 reduce to the linear case in [19,25].
(2) When p = 2 and v > 1, the estimate (1.20) reduces the case of the
weighted porous medium equation, which has been proved in [29] by the author.
(3) Theorem 1.6 is new for non-weighted case. In [3], the authors obtained
Li-Xu type estimates for the doubly nonlinear diffusion equation, but when
K =0, their estimates are not optimal.

Theorem 1.9 (Hamilton type estimate). Let (M™, g,du) be a closed weighted
Riemannian manifold satisfying CD(—K,m) condition for K > 0. Let v(x,t)
be a positive solution to equation (1.11), for any b > 0, we have

(1.27) |VU|p _ eQ?tﬂ < e4?t
v v

)

~ | QI

where K = prK SUpr[o,T)(”|VU|p72)'

Integrating on minimizing path for estimates in Theorem 1.6 and Corollary
1.7, we can prove the Harnack inequalities for positive solutions to WDNE.

Corollary 1.10. For any (x1,t1) and (ze,ts) with 0 < t; <te < T, we have
(128) ’U(’Il,tl) 7’1)(1‘2,t2)

t2 * t2

t —1d p
< 'Umax/ SO( )dt + b * (xQ’ xl) * / C“’il (t)dt
t1 a(t) pp (t2 - tl)p t1

and
(1.29) v(z1, 1)
’U(I27t2)
< exp /t2 (p(t)dt + p—1 1 dleyz)” /t2 ap%l(t)dt
- t1 a(t) PP" Umax (t2 —t1)P" t1 ’

where p* = pfl and Umax = SUP 7y [0,T) V-

When (M, g,du) has nonnegative m-Bakry-Emery Ricei curvature, i.e.,
CD(0,m)-condition, we can prove an optimal Li-Yau type estimates, which
is a generalization for the case m = n in [30].
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Theorem 1.11 (Optimal Li-Yau type estimate). Let (M,g,du) be a closed
weighted Riemannian manifold with CD(0,m)-condition. Let v be a smooth
solution to (1.11). Then we have

(1) for any (p—1)y > 1,

(1.30) Vol v @,

’ v v ot
(2) foranyl—2 <(p—1)y <1,

» _

(1.31) [VolP v >4

v v t

Moreover, these estimates are optimal, i.e., when u is a fundamental solution
to (1.9) on R™, equality holds in (1.30) and (1.31).

This paper is organized as follows. In Section 2, we derive some useful
evolution equations by the weighted p-Bochner formula. In Section 3 we prove
the W-entropy monotonicity formula, i.e., Theorem 1.1. In Section 4, we obtain
Qian type, Hamilton type and optimal Li-Yau type estimates, i.e., Theorem
1.6, Theorem 1.9 and Theorem 1.11. Finally, Harnack inequalities are derived
as applications.

2. Nonlinear Bochner formulae and evolution equations

Let (M, g,du) be a closed weighted Riemannian manifold. Suppose u is a
smooth positive solution to (1.9) and v = Fu’ satisfies (1.11). Assume that

w := |Vv|? > 0 on a region of M and define the linearized operator of weighted
p-Laplacian at point v
(2.1) L) = divy(w? " A(Ve))
and its parabolic operator
(2.2) Oy := 0, — bvLy,
where A is a tensor and defined by
A:g+(p72)Vv®Vv'
Thus,
(2.3) Osv = [Vol? — (p — 2)bvA,, .

Lemma 2.1. Let 8 be a constant. Then we have the following evolution
equations:

(2.4) Ofvr = bugAp v+ pwt ~HVo, Vo),
(2.5) O = B(1—bp—1)(B- 1))vﬂ_1w% — Bb(p — 2)vP A, pv,

(2.6) Ojw = pw? N (Vu, V) + 2bwA, v — (g — 1w 2| Vw|?
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— 2bvw: ! (\VVUF + Ricy(Vo, Vv)),

(2.7 Df(w%) = pw?® Y (Vu, Vuw?) fpbvaﬁ(\VV’u& + Ricy(Vo, Vv))
+pbw%AP,fv.

Proof. By the definition of £; and Oy in (2.1) and (2.2), a direct calculation
implies that

0 . 2_ p D_

Q(Ap“fv) = dlvf((w2 Vo, + (§ —Dw? Zthv))
p Vo,V

v (wf_l (Vog + (p— 2)<Uwivt>Vv)>

vi(IVolP T2 A(Vvy)) = Ly (v),

di
di

then
‘:lf’()t = 8tvt - b’l)ﬁf(’l}t)

= 0pvy — O¢(buAp pv) + bu Ay v
= pw2 NV, Vor) + bui A, fo.
There exists a nonlinear Bochner formula for £ (see [31]),
(2.8) Lyw = 2wE " (|[VVu]? + Ric (Vo, Vo)) + 2(Vo, VA, ;v)
+ (g ~ w2Vl
Hence,
Orw = wy — bvLy(w)
=2Vuv- V(vamw + w%> — 2bvw® "1 (|VVu[? + Rics (Vu, Vv))

- bv<2<Vv, VA, jv) + (g — I)Ww\ng_Q)
= 2bwA, v + pw: YV, Vw) — (g — 1)bv|Vw|?ws 2
— 2bvw? ! (|VVU|2 + Ricy(Vu, Vv))
and
Op(w?) = dyw? — buly(w?)
= gwgflwt - gbvefdiv(e*f(wgfl)wgflA(Vw))

= gwgflmfw - g(g — Dbvw?3Vw - A(Vw)
_ b 24 2_q b 2 2_9
= 5w 2bwA, v+ pwz~(Vo, Vw) (2 1| Vw[*w?

— pbow? ™2 (\VVU|2 + Ricy(Vo, VU))



ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES
Vv - Vwl|?
=2 o= (Vw2 + (p—2) VY

= pbwi A, v+ pw? 1V, Vw?)
— phowP ™2 (\VVU& + Ric¢(Vo, VU)),

—2 |Vuw|? —2)2 |Vo-Vuw|?
where |VVv|4 = |[VVu|? + —p22| Z;‘ + 4) I Uwzw‘ .

Proposition 2.2. For a constant «, let y = @, z = =t and define
v VulP
F, ::a—tfu:azfy.
v v

Then we have
(2.9)  DpF, = 6wb=! (Vu, VE,) + pbuwP > (|VW|3 + Rics (Vo, W))

Ut

Fo-D(F+ -1 (%)),

where 6 = 2vy(p — 1)+ (p — 2). In particular, when o =1,

v |[VolP
P=—- = bA
! v v bBp.sv
and
(210)  Of(F) = dw2 ! (Vo, VF) +pbwp_2<|VVU|?4 + Ricp(Vo, Vv))
+(p—1)FY}.

Proof. Following the proof in [30], a useful formula for operator Oy is

(211) O (h> _Hih hDQfg + 2w ! <A(V(£)>,V10gg>.

g g g
Applying (2.11) and Lemma 2.1, we have
VolP
(2.12) O, <| i )
v

1 p D b
=5 ((2]3 — Qw2 F +pw2 Vo, Vuﬁ))

— pbwP ™2 (|VV7)|124 + Ricy(Vo, Vv))

_ % +vaw§—1<A<V(%g)>7V10gv>,
and
vy wP/2

(2.13) Df(&) = %((P - 1) +pw%‘1<Vv7Vvt>) -

+ 2bvws ! <A(V(%))7V10gv> .

v

1549
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Combining (2.12) and (2.13), we get

O F, = 2bvw? ™1 (Vlogv, A(VE,)) +pbwp_2<|VVv\?4 + Ricy(Vo, Vv))

p
2

pw
v

wP vy wP/?
A
v v

Ut
+(p-1)F (a; -
+pws ! <Vlogv, V(aw; — w%)> )

A direct calculation implies that

(Vlegv,V(vF,)) = (Vu,VF,) + F,

[Vol?
v

then we have
OfF, = ws ™! <w, (QbA(VFa) +pVFa)>

+pbwf“*2(|vv1)|?4 + Ric; (Vo Vv))

v 2ws 5
N (a2 =

+(p = DFi (o

v?2 v v v

wP v w? w
S RN I L

Now we rewrite the last five terms as

(p—1)(z—y)(az—2y) +y* —ayz+pylaz—y) = (p—1)((y — 2)* + (= 1)z?).

Which gives the desired formula (2.9). When o = 1, (2.10) is a direct result of
(2.9). O

3. Entropy formulae

Applying the weighted nonlinear Bochner-type formula in Lemma 2.1, we
get the following integral formulae.

Lemma 3.1. Let u and v be positive solutions to (1.9) and (1.11). Then we
have

d
(3.1) %/ vudp:/ bu(A, sv)udp = —(b+1) |VolPudu
M M M

and

2

d
(3.2) el /M vudy = p/M(buﬂ’*2 (|VVU\2A+Rin(Vv, Vv)) —I—(bAp,fv)z) vu dp.
Proof. Note that Vv = yu*~1Vu. Then

(3.3) Vu? = Vvuﬁ, uVov = bwVu.
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Combining (3.3), (1.9) and (1.11), we have

d
G [ = [ 0oy 0) + (V0P )+ (0] di
:/ bU(Ap,fv)udu—i—/ |Vv|pud,u—/ Vo - Vu |Vu[P~2 dp
M M M

= / bu(Ap, pv)udp.
M

Integration by parts yields that

/ bu(A, fv)udp = 'y/ (A, po)ut T dp = —'y/ Vo - Va1 VolP~2 dy
M M M
=—(b+ 1)/ |VolPudp.
M

Applying (1.9), (1.11) and 9; = O + bvLy, we have

d 0 0
— va7vud,u:/—bA)vvudu—&—/—vubA,vdu
(Ap.sv) M@t( pf) Mat( JbAp, ¢

dt Jur
_ / (D568, 50) + boLy (b 0) oudp
M
+/ bApjv((Ap,fu'*)v + (bvA, v+ \Vv|p)u) dp.
M

By using (2.10), we have

d
@i/, bu(Ap, pv)udp

= / D [bwp_2(|VVv|?4 + Rics(Vo, Vv)) + (bAp’fv)Q} vudp
M
+2y(p—1)+(p-2)b | w2t (Vv, VA, ;v)vudp
M

+b? / LA, po)v’udp + b/ Ap7fv<(Ap7fu’Y)v + \VU|Pu> dp.
M M
Note that bV (v?u) = (2b + 1)uv Vv and integration by parts,

b? /M Li(A, po)v’udp = — b? /M<V(112u), A(VA, 1)) Vo|P~2 du

=—(2b+1)(p— 1)b/ (Vo, VA, 10)|VolP~2oudp.
M
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Finally, (3.3) and integration by parts again imply that
b/ vAp pu(Ap,pul) dp
M

= b [ (T(00), T d
M

= — b/ A, sl VolPudp — b/ (Vo, VA, 10)|VolP2vudp.
M M
Putting these equalities together, we get the desired formula (3.2). O

Proof of Theorem 1.1. Define the Shannon type entropy
Nk(t) == —UK(t)/ vu d,

M
where ok (t) is a function of ¢, then by the integral formula (3.1), we have

d
(3.4) %NK@ =— dK/ vudp — O'K/ b(Ap, pv)vudp
M M

=— CTK/ (bA, fv+ (logok)") vudp,
M

where - and ’ denote the time derivative.
By the formulae (3.2), (3.4) and the definition of

f:pb—K sup |VolP~2v,
2 mxo,7)
we have
CLQ/\/' (t)y= —o & vudp — 26 i/ vudp — & /vud
= —O’K/ p(bwp_2(|VVv|?4—i—Ricf(Vv,Vv)) —|—(bAp7fv)2> vudp
M

2. d . 2.2
(3.5) + 252 N + (UK - Uf) Ni.

o dt oK 0%

When b > 0, v > 0, we have K > 0, then
d2

36) — t

(36) L Nic()

< - UK/Mp (wa’*Q (|VVU\?4+(Rin +Kg)(Vv, Vv)) +(bAp}fv)2) vudp

. F d . 2.2 2? .
+2<0K+ ) NK+<0K0K0K>NK.

ox  b+1)dt ok 0% b+log
Define the Perelman type W-entropy
1 d d
. t) == —(agk(t t)) = t)—
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= - UK/ (Bi (bAp,v) + (1 + (log o) B ) ) vu dpa,
M
Vo (1 &
ZUKBK/ [(b+1)| | (+K>} vudpy,
M v

Br Ok

where Sk (t) = §%, then

di2 Br dt

Combining (3.4) and (3.6), we have

(38 SWilt)

d d2 1+ Bk d
%WK(t) = Bk (NK + * P NK) .

< - UKBK/ D (bwp_2 (\VVU& + (Ricy + Kg)(Vv,Vv)) + (bApyfv)2> vudp
M

) 1+ K d Y 262 2K 6
28k <0K+ +5K+ ) NK+/3K<57K_¥_707K)NK'
K

ok 26k b+1)adt
Using the identity,

p_ t
(3.9) b ‘uﬂ IV, Vv + ";—(b)aij )
_ 2Kk p_ n772
= bwP 2| VVul4 + w2 Hra (VVe) + —£&
w? TV + 2 iy (V) 4 K
_ 2nk 2_ nn;
= bwP2|VVu|4 + ?(Apva +w2 NV, Vv)) + mijl()
and putting (3.9) into (3.8), we get
(3.10)
d
— t
aVE®
2
< —UKBK/ pb (}w%*viw + n—Kai]- + wp72(RiC}"’ + Kg)(Vu, Vv)) vudp
M mb 1A

1+ Bk K PNK
B 2 / _
UKBK/M (p(bAp_,fv) +2 ((logaK) + T + b1 mb (bA, fv) | vudp

. 2
—UKﬂK/ ((log ox)" + ! —ng (logok) + (logok))? — %) vudp
M 1

—O’KBK/ _ (w%_1<Vv,Vf> - %(m - n))Qvudu.
M

m-—-"n
In order to get a complete square formula in the second and third line in (3.10),
we choose a proper function 7 (¢) such that

PIK = A+ S5+ g — Bk
P =N+ X+ SN = B

(3.11)
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where A = (log ok)’, which is equivalent to
a
0=n% — 2\ —— (A2 =X 42D\
M = 2N + == ( +2D))

1
= (i = N)* = — (W +a (V' =2DY),

(3.12)

where D = %. Thus, a special solution of the equation (3.12) is

2aD
K =A= 1 —e—2Dt"

Inserting this back to system (3.11), we get

sinh (2Dt . 2Dt _1\*
K = w, ax = Dtanh(Dt), ox = (e”!sinh(Dt))* = £ ).
2D 2

Thus, from (3.10), we get the Perelma type W-entropy formula,
(3.13)

d

— t

" VE®)

IN

_O'KBK/ pb (‘wgilviVjU'FT]iKaﬂi,j
M ' mb -

2
N + w”fz(Ric’f" + Kg)(Vu, Vv)) vudp
2 b 21 _ _\TK 2
—okBr /Mp ((bAp,fv +nr)"+ P (w (Vu,Vf)—(m n)mb> vudp.
Therefore, W-entropy (3.7) is monotone decreasing along the weighted doubly

nonlinear diffusion equation with CD(—K, m) condition. O

Proof of Corollary 1.2. In particular, when K = 0, oo(t) = t%, Bo(t) = t and
no(t) = %, all of the inequalities become equalities in the proof of Theorem
1.1. Then we have entropy monotonicity formula for WDNE with CD(0,m)

condition,

d . a
(3.14) NG (1) = —t /M (vp. v+ E)fuu du

and
(3.15)

d
%ij(v, t)
a

— _ btﬁ+1/ ‘ g—lviv_ — i
p y w ﬂH—mbtaJ

0 b p_ a(m—n)\> a2
_ a+1 5—1 . [ S A _
ot /M{ (w Vo V- S ) +(b p,fu+t)

2
. + wp_QRic?”(Vv, Vu)] vudp

vu dp,
m-—n

where the Shannon-type entropy and Perelman-type entropy are defined by
No(t) = Np p(v,t) == —ta/ vudp

M
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and
a VolP a+1
(3.16)  Wolt) = Wy s(v, 1) ::t“/f ((b+1)%— t )vudu.

]\/ D

Corollary 3.2. Let (M, g,du) be a weighted Riemannian manifold and u be a
smooth positive solution to the weighted parabolic p-Laplacian equation

(3.17) u= A, (u) == divy (|VulP>Vu).
W-entropy is defined by

-2 p 1 )
WK(U,t) = O’Kﬁ[( [p |V’U| - < + JK):| vudu.
mlp—1 v Br ok

Then we have

(3.18)
d
— Wk (v,t
a’ Ve
~ 2
< —UKﬂK/ pb (’|Vu|p’2vivjv + %aij At Vo~ (Ric} + Kg)(Vo, VU)) vudp
M

2 b 3 Nk \ 2
_ v p—2 . _ _ o\ K
oKk PK /Mp ((bApﬁfv + 77K) + - (|Vv| Vu-Vf—(m n)mb) ) vudp,

- (p=2)m _ p=
where @ = Gy -gymip U = b

D= swp v one = (e s (D), i = S e = 2B
Mx[0,T)

Moreover, if CD(—K,m) holds for K > 0, then Wk (v,t) is monotone decreas-
ing along the weighted parabolic p-Laplacian equation (3.17).

1, 2=2 .
s urT s the pressure, and

4. Differential Harnack estimates and applications

In this section, we prove various differential Harnack estimates for WDNE
on the weighed manifolds with CD(—K,m) condtion, including sharp Li-Yau
type estimate, Hamilton type estimate and Li-Xu type estimate, etc.. As ap-
plications, Harnack inequalities are derived.

Proposition 4.1. Let u be a smooth positive solution to (1.9) and v satisfies
(1.11). Define

v VP
Pe=an® -V o),
where a(t), p(t) are defined in (1.21). If o(t) is a function of t and satisfies
the assumption (A1) and (A2), then we have

b2 I \?2 /
(4.1) OfF > dwi ™1 (Vu, VF) +a (_Amvv + 4 K) ~ZF

a 20 o
2

+ (- D(a-1)(%)
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and

2 ’ 2
(4.2) Of(oF) > dow: ™! (Vo, VF) + ac (bc‘zAp’fv + 2% —i—K)

2
CERICEILIC
wherebzw—p—il >0,a= #bl)ﬂ’ d=2v(p—1)+(p—2), w=|Vv|* and

F:% sup (v|Vv[P~2).
Mx(0,T]

Proof. Applying (2.9), we have
(4.3)  OpF = 6wb =1 (Vo, VF) + pbuwP 2 (|VW|§x + Ric, (Vo W))

_ 2 _ ﬁ 2 / ﬁ /
+(p 1)((bAp$fv) + (o 1)(0) )—i—a (v) + ¢
The elementary inequality
2 2
(a+b)? > a _b7, Ve>0
1+e€ €
implies that
(4.4) wp—2(|vvu\?4 +Ric (Vo, Vv))
1/ , 2
> - (wi_ltrA(VVvD + wp_zRicf(Vv,Vv)
1 p_ _ . (Vv Vf>2
= — A 2 1 2 p—2 m AR
B+ w0 E 0912 4w (R (Vo o) 4 2T
1 9. m
> E(Apjv)z + wP*Ric} (Vo, Vo),

where € = 72 — 1. Combining (4.3), (4.4) and Ric}" > —K, we get
P 1

(4.5) Oy F > w2 (Vu, VE) + =(bA, jv)* — ppKw?P™!

a

2
+(p—1)(a— 1)(E) —I—a’(ﬂ) + ¢

v v
Note that tr4(w? ~'v;;) = A, and pij(v\VvP_Q) < K , one has
(4.6) O F — dw: ! (Vo, VF)

b2 2b2 b2 ~
g(Ap,fU + 77)2 - ?nAp,fv - 5772 — pbKwP~!

v

+(p—1)(a— 1)(%)2 +ao/(2) +¢f

v

V
15
—
>
<
<
[
+
=
[V
+
—~
Q\
|
Q\‘g
3
N2
| &
|
—~
)
=
|
/|
3
N2
|
\
3
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2
Ut ’
+(p—1)(a- 1)(;) +

b2 — b O/—QTbn vy w
TN 2 Q(K——) & T el W
7 (Bpgv+n)”+ PR Ay o

v\ 2 — b b?
+(p-Da-D(2) +¢' —2(K - Zn)p— =
v a a
Now we choose the proper functions o(t) and 7(t) such that «(t) and ¢(¢)
satisfy the following system
= 2(277 - ?)7
o/f%n
2(K—2n)’
2 _ a / N7 b
P ()

Plugging (4.7) into (4.6), we have

o A%

(4.7)

2 O'/

. 2
(4.8) OpF > dw2 "1 (Vo, VF) + %(AMMH—??)Q ——F+(p-1)(a— 1)(%) )

o
By (4.1) and

D‘fG = Df(U’F) = O’DfF + ()'lF‘7
we can easily get (4.2). In fact, the first equation in (4.7) is equivalent to

/

n(t) = %(0— +2F).

o
Inserting this into the last two equations in (4.7), we have

— a ! —\2
(ca) =o' +2Ko and (U@)/:%(%+2K> :

Integrating above identities on [0,t], we can obtain the exact expressions of
a(t) and p(t) in (1.21). O

Proof of Theorem 1.6. Since b > 0, a > 0, p > 1, applying the parabolic
maximum principle in (4.2), it is easy to get F' > 0, that is (1.20) in Theorem
1.6. O

Remark 4.2. Integrating the differential Harnack estimate (1.20) yields

p
OS/ Fvudu:/ (a(t)ﬂ—&—i—gp(t))vudu
M M v

- /M (a(by o) + (o - Vel (1)) v d
(4.9) _ /M (O;bjll (b, 70) + () oudp.
Set
(410) log o) = (1),
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we have
(4.11) 9 Nie(t) <0,
dt

that is Shannon type entropy N (t) is monotone decreasing along WDNE. In
particular, when a(t) = 1+ 2Kt and ¢(t) = (’1(% + K + %FZt), by solving
ODE (4.10), we have

b\ ~lras)a

)

(4.12) ox(t) = (142 2
bt1

Wl o

Proof of Theorem 1.9. Define

VolP
v Ofl‘ v
v

By (4.5) and K = % SUP a1 [0,7) v|Vo|P~2, we have

G:=a'F= +a .

(4.13) O0;G = (@™ F+a 'O F

i -1 2
> sw2 Vo, VG) + %(bAp,fv)Q +(p-11-a) (%)
fala Y _oRa 1Y a Y + (a™HF
v v
i -1 2
= 5wk V0, VG) + T (b8 0)* + (p— (1 — ) (L)
a v
1 (Y9I no1 —1W?2 -1
+ (log ) (= = 2K[(log )| o™ == + a”lp)
+ (@ YF-da2p+aty
. —2Kt 2
> Gt (Vo, VG) + S (b8, ) + (p— 1)1 — 0 ()

2K ae?Kt  ge2Kt

t t2

—2Kt =~ 2Kt

(bAp,fv)2 - X

> fwr! (Vu,VG) + ¢ —r

where a(t) = ¢?X? and ¢(t) = 2e*K*. Now we show that G > 0 on M x [0, 7).
Since M is closed, assume that G attains its minimum at point (z,t9) and
G(zo,t9) < 0. Then at (zo, o),

0,G <0, VG=0.
On the other hand, at this point,

= 2Kt _ p P
0< W VO v (VO v,
t v v v v ’



ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES 1559

Put this inequality into (4.13), we have
DfG > 0.

This is a contradiction. Thus we have finished the proof of Theorem 1.9. O

Proof of Corollary 1.10. Let ¢(t) be a constant speed geodesic connected (1)
= 21 and ¢(t2) = o with [¢(2)] = %. Applying the differential Harnack
estimate (1.20) and Young’s inequality, we have

v .’I,'g,tg) - U(xlatl)

:/ vy + (Vu,<(t))dt

o(t) 1 p—1 1 . >
> P2ty — — |Vl — ——ar1(t)[<(®)|? |dt
A( = OINC]

tz _ p* to

> _Umm/ so(t)dt_p *1d(x27x1)*/ o7 (1)t
o alt) PP (ta —t1)P" Jy,

and
log —=-*Z V(@2 t )
v(xy,t

:/tl

(Cltlogv x,t) + Viogv - <(t )) dt

" 1 —1R@P
p S 1
t ) — —— |V — () ) dt
_ p* to
> / ( )dt P *1 1 d(ze,x1) i / T ()t
a(t) PP Umax (t2 —11)P t1
Here p* . This finishes the proof of Corollary 1.10. (]

Proof of Theorem 1.11. Estimate (1.30) is a direct result when we take K = 0
n (1.22), (1.24) or (1.27). In fact, we can also give a direct proof for (1.30).
Using (2.10) and (4.4), for any b > 0 and Ric}" > 0, we get

, b
Oy (Fy) > 0wd=1 (Yo, VF) + %(A%fv)? +(p—1)F?
, 1
= w2 (Vo, VF}) + 5F12,

where a = @ mb Since M is closed, the standard parabolic maximum

—1)mb+p-
principle implies the estimate (1.30). Moreover, if we take the Barenblatt-type
solution of WDNE (1.9) on R™,

(4.14) u(z,t) =t PRt ), F(E) = (C - kle[7)I,
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where a = Mﬁ, Kk = @(%)ﬁ, C is any positive constant, then

equality holds in (1.30), i.e., the differential Harnack estimate (1.30) is sharp.

The similar argument holds for (1.31). g
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