Bull. Korean Math. Soc. 58 (2021), No. 6, pp. 1539-1561

https://doi.org/10.4134/BKMS.b210087 pISSN: 1015-8634 / eISSN: 2234-3016

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

Yu-Zhao Wang

ABSTRACT. We prove Perelman type \mathcal{W} -entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K,m) condition for some $K\geq 0$ and $m\geq n$, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.

1. Introduction and main results

A weighted Riemannian manifold $(M, g, d\mu)$ is an n-dimensional Riemannian manifold (M, g) with a smooth measure $d\mu := e^{-f} dV$, where f is a smooth function on M, dV is the volume measure of M. The weighted Riemannian manifold carries a natural analogous Ricci curvature, that is, the m-Bakry-Émery Ricci curvature, which is defined by

(1.1)
$$\operatorname{Ric}_{f}^{m} := \operatorname{Ric} + \nabla \nabla f - \frac{\nabla f \otimes \nabla f}{m - n}.$$

In particular, when $m=\infty$, $\mathrm{Ric}_f^\infty=\mathrm{Ric}_f:=\mathrm{Ric}+\nabla\nabla f$ is the classical Bakry-Émery Ricci curvature, which is introduced in the study of diffusion processes and functional inequalities (see [1] and also [2] for a comprehensive introduction), and then it is extensively investigated in the theory of the Ricci flow and optimal transport theory, when m=n if and only if f is a constant function. There is also a natural analogous Laplacian, namely, the so-called weighted Laplacian (also called the f-Laplacian, drifting Laplacian or Witten Laplacian in the literature), denoted by $\Delta_f = \Delta - \nabla f \cdot \nabla$, which is a self-adjoint operator in $L^2(M,d\mu)$.

Received January 28, 2021; Accepted July 6, 2021.

²⁰¹⁰ Mathematics Subject Classification. Primary 58J35, 35K92, 35K55.

Key words and phrases. Weighted doubly nonlinear diffusion equations, Perelman type entropy formula, differential Harnack estimates, Bakry-Émery Ricci curvature, curvature dimension condition.

This work was financially supported by NSFC No. 11701347.

There is an enhanced Bochner formula with respect to Δ_f (see p. 383 in Villani's book [27]):

$$\frac{1}{2}\Delta_{f}|\nabla\psi|^{2} - \nabla\psi \cdot \nabla\Delta_{f}\psi$$

$$= |\nabla\nabla\psi|^{2} + \operatorname{Ric}_{f}(\nabla\psi, \nabla\psi)$$

$$= \frac{(\Delta_{f}\psi)^{2}}{m} + \operatorname{Ric}_{f}^{m}(\nabla\psi, \nabla\psi) + \left|\nabla\nabla\psi - \left(\frac{\Delta\psi}{n}\right)g\right|^{2}$$

$$+ \left(\frac{1}{n} - \frac{1}{m}\right)\left(\Delta\psi + \frac{n}{m-n}\nabla f \cdot \nabla\psi\right)^{2}.$$

For convenience, one can reformulate the Bochner formula in terms of the Bakry-Émery's Γ_2 formalism. For a given operator Δ_f , define the associated Γ operator by

$$\Gamma(\varphi, \psi) := \frac{1}{2} [\Delta_f(\varphi \psi) - \varphi \Delta_f \psi - \psi \Delta_f \varphi] = \nabla \varphi \cdot \nabla \psi.$$

The Γ_2 operator is defined by

$$\Gamma_2(\varphi, \psi) := \frac{1}{2} [\Delta_f \Gamma(\varphi, \psi) - \Gamma(\varphi, \Delta_f \psi) - \Gamma(\psi, \Delta_f \varphi)].$$

In particular,

$$\Gamma_2(\psi) := \Gamma_2(\psi, \psi) = \frac{1}{2} \Delta_f |\nabla \psi|^2 - \nabla \psi \cdot \nabla \Delta_f \psi.$$

By (1.2), when $\operatorname{Ric}_f^m \geq -Kg$ and m > n or m < 0, we have

(1.3)
$$\Gamma_2(\psi) \ge \frac{(\Delta_f \psi)^2}{m} - K |\nabla \psi|^2.$$

If (1.3) is valid, we say that $(M, g, d\mu)$ satisfies the curvature-dimensional condition CD(-K, m), which is equivalent to the m-Bakry-Emery Ricci curvature bounded below by -K.

In recent years, people study geometric analysis problems on the weighted Riemannian manifolds, for instance, gradient estimates and Liouville theorems for symmetric diffusion operators Δ_f [10], some comparison geometry for the Bakry-Émery Ricci tensor [32], eigenvalue estimates [5] and splitting theorems [4] etc.. In his 2002 seminal paper [24], Perelman introduced the W-entropy

$$\mathcal{W}(g, f, \tau) := \int_{M} \left(\tau(R + |\nabla f|^{2}) + f - n \right) u \, dV$$

and proved its monotonicity

(1.4)
$$\frac{d}{dt}\mathcal{W}(g,f,\tau) = 2\tau \int_{M} \left| R_{ij} + \nabla_{i}\nabla_{j}f - \frac{1}{2\tau}g_{ij} \right|^{2} u \, dV \ge 0,$$

where $u = (4\pi\tau)^{-\frac{n}{2}}e^{-f}$ satisfies the conjugate heat equation coupled with Ricci flow,

$$\partial_t g = -2\text{Ric}, \quad \partial_t f = -\Delta f + |\nabla f|^2 - R + \frac{n}{2\tau}, \quad \partial_t \tau = -1.$$

Later L. Ni [22,23] obtained the W-entropy monotonicity formula for the linear heat equation on Riemannian manifolds with nonnegative Ricci curvature.

$$(1.5) \qquad \frac{d}{dt}\mathcal{W}(f,t) = -2t\int_{M} \left(\left| \nabla_{i}\nabla_{j}f - \frac{1}{2t}g_{ij} \right|^{2} + R_{ij}f_{i}f_{j} \right) u \, dV,$$

where $u=(4\pi t)^{-\frac{n}{2}}e^{-f}$ is a positive solution to the heat equation $\partial_t u=\Delta u$ with $\int_M u\,dV=1$ and $\mathcal{W}(f,t)$ is defined by

$$\mathcal{W}(f,t) := \int_{M} \left(t|\nabla f|^{2} + f - n \right) u \, dV.$$

In [11], X.-D. Li established a Perelman type \mathcal{W} -entropy formula for the weighted linear heat equation on the weighted Riemannian manifolds with CD(0, m) condition.

Theorem A (Li [11]). Let $(M^n, g, d\mu)$ be a weighted Riemannian manifold and u be a positive solution to the weighted heat equation $\partial_t u = \Delta_f u$ and $\int_M u d\mu = 1$. Define the weighted W-entorpy

$$W_f(v,t) := \int_M \left(t |\nabla v|^2 + v - m \right) u \ d\mu, \quad u = \frac{e^{-v}}{(4\pi t)^{m/2}},$$

then we have

$$(1.6) \qquad \frac{d}{dt} \mathcal{W}_f(v,t) = -2t \int_M \left(\left| \nabla_i \nabla_j v - \frac{1}{2t} g_{ij} \right|^2 + \operatorname{Ric}_f^m(\nabla v, \nabla v) \right) u \, d\mu$$
$$- \frac{2t}{m-n} \int_M \left(\nabla f \cdot \nabla v + \frac{m-n}{2t} \right)^2 u \, d\mu.$$

In particular, if CD(0,m) condition holds, then $W_f(v,t)$ is monotone decreasing along the weighed heat equation. When m=n, f=const., (1.6) reduces to (1.5).

In [12,13], when $n \leq m \in \mathbb{N}$, S. Li and X.-D. Li gave a direct proof and natural geometric interpretation of the \mathcal{W} -entropy formula (1.6) by using the warped product approach. Moveover, they extend the \mathcal{W} -entropy formula to the weighted heat equation on the weighted compact Riemannian manifolds with time dependent metrics and potentials. More recently, in [18], they introduced Perelman's \mathcal{W} -entropy along geodesic flow on the Wasserstein space over Riemannian manifolds. For further related study, see [14–17].

It is natural to study the entropy formulae for nonlinear equations, the authors obtained the Perelman type entropy formulae for p-heat equation [9] and porous medium equation [21] on Riemannian manifold with nonnegative Ricci curvature. Combining the analogous methods in [9], [21] and [11], Wang-Yang-Chen [31] and Huang-Li [8] proved the entropy formulae for the weighted p-Laplacian heat equation and weighted porous medium equation with CD(0,m) condition, respectively. In [30], the authors got the \mathcal{W} -entropy formula for positive solutions to the doubly nonlinear diffusion equation on the closed Riemannian manifold with nonnegative Ricci curvature.

Theorem B (Wang-Chen [30]). Let (M^n, g) be a closed Riemannian manifold and u be a positive solution to the doubly nonlinear diffusion equation

(1.7)
$$\partial_t u = \Delta_p(u^\gamma).$$

Set $v = \frac{\gamma}{b}u^b$ and define Perelman-type W-entropy

$$\mathcal{W}_p(v,t) := t^{a+1} \int_M \left((b+1) \frac{|\nabla v|^p}{v} - \frac{a+1}{t} \right) vu \, dV.$$

Then we have

$$\frac{d}{dt}\mathcal{W}_{p}(v,t) = -pbt^{a+1} \int_{M} \left(\left| w^{\frac{p}{2}-1} \nabla_{i} \nabla_{j} v + \frac{a}{nbt} a_{ij} \right|_{A}^{2} + w^{p-2} R_{ij} v_{i} v_{j} \right) vu \, dV$$

$$-pt^{a+1} \int_{M} \left(b \Delta_{p} v + \frac{a}{t} \right)^{2} vu \, dV,$$

where $b = \gamma - \frac{1}{p-1}$, $a = \frac{nb}{nb(p-1)+p}$, $w = |\nabla v|^2$, $A^{ij} = g^{ij} + (p-2)\frac{v^iv^j}{w}$ and a_{ij} is the inverse of A^{ij} .

In this paper, we focus on the weighted doubly nonlinear diffusion equation (WDNE for short)

(1.9)
$$\partial_t u = \Delta_{p,f}(u^{\gamma}) := \operatorname{div}_f(|\nabla u^{\gamma}|^{p-2} \nabla u^{\gamma}),$$

where $\gamma > 0$, p > 1, $f \in C^{\infty}(M)$, $\Delta_{p,f}$ and $\operatorname{div}_f := e^f \operatorname{div}(e^{-f} \cdot)$ denote the weighted p-Laplacian operator and weighted divergence operator, respectively. WDNE has the rich physical background and appears in several models, including non-Newtonian fluids, glaciology and turbulent flows in porous media. From a mathematical point of view such as in [26], it can be viewed as a generalization of the weighted heat equation $(p = 2, \gamma = 1)$, the weighted porous medium equation $(p = 2, \gamma > 1)$, fast diffusion equation $(p = 2, \gamma < 1)$ and the weighted parabolic p-Laplacian equation $(\gamma = 1)$. Taking the pressure transform

(1.10)
$$v(u) := \frac{\gamma}{b} u^b, \quad b = \gamma - \frac{1}{p-1},$$

then the equation (1.9) satisfies

(1.11)
$$\partial_t v = bv \Delta_{p,f} v + |\nabla v|^p.$$

Inspired by the previous work [8,9,11,21,28,30,31], the first result in this paper is the Perelman type W-entropy formula for the weighted doubly nonlinear diffusion equation on closed weighted Riemannian manifolds with CD(-K,m) condition for $K \geq 0$ and $m \geq n$.

Theorem 1.1. Let $(M, g, d\mu)$ be a closed weighted Riemannian manifold with CD(-K, m) condition for K > 0 and m > n. Let u be a positive solution to (1.9) and v satisfy (1.11). Define the weighted Perelman-type W-entropy (1.12)

$$\mathcal{W}_K(v,t) := \sigma_K \beta_K \int_M \left[(b+1) \frac{|\nabla v|^p}{v} - \left(\frac{1}{\beta_K} + \frac{\dot{\sigma}_K}{\sigma_K} \right) \right] v u \, d\mu, \ b = \gamma - \frac{1}{p-1} > 0.$$

Then we have

$$(1.13)$$

$$\frac{d}{dt}\mathcal{W}_{K}(v,t)$$

$$\leq -pb\sigma_{K}\beta_{K}\int_{M}\left[\left||\nabla v|^{p-2}\nabla_{i}\nabla_{j}v+\frac{\eta_{K}}{mb}a_{ij}\right|_{A}^{2}+|\nabla v|^{2p-4}(\operatorname{Ric}_{f}^{m}+Kg)(\nabla v,\nabla v)\right]vu\,d\mu$$

$$-p\sigma_{K}\beta_{K}\int_{M}\left[\left(b\Delta_{p,f}v+\eta_{K}\right)^{2}+\frac{b}{m-n}\left(|\nabla v|^{p-2}\nabla v\cdot\nabla f-(m-n)\frac{\eta_{K}}{mb}\right)^{2}\right]vu\,d\mu,$$

where $\bar{a} = \frac{mb}{mb(p-1)+p}$ and $A^{ij} = g^{ij} + (p-2)\frac{v^iv^j}{|\nabla v|^2}$ is the inverse matrix of a_{ij} , $D = \frac{\overline{K}}{b+1}$, $\overline{K} = \frac{pbK}{2}\sup_{M\times[0,T)}(|\nabla v|^{p-2}v)$, $\sigma_K = (e^{Dt}\sinh(Dt))^{\bar{a}}$, $\beta_K = \frac{\sinh(2Dt)}{2D}$ and $\eta_K = \frac{2\bar{a}D}{1-e^{-2Dt}}$. Moreover, if CD(-K,m) holds, then $W_K(v,t)$ is monotone decreasing along WDNE (1.9).

Corollary 1.2. Let K=0, $\sigma_0=t^{\bar{a}}$, $\beta_0=t$, $\eta_0=\frac{\bar{a}}{t}$, and

(1.14)
$$\mathcal{W}_0(v,t) = t^{\bar{a}+1} \int_M \left((b+1) \frac{|\nabla v|^p}{v} - \frac{\bar{a}+1}{t} \right) v u \, d\mu.$$

Then we get

$$(1.15)$$

$$\frac{d}{dt} \mathcal{W}_{0}(v,t)$$

$$= -pbt^{\bar{a}+1} \int_{M} \left[\left| \nabla v \right|^{p-2} \nabla_{i} \nabla_{j} v + \frac{\bar{a}}{mbt} a_{ij} \right|_{A}^{2} + \left| \nabla v \right|^{2p-4} \operatorname{Ric}_{f}^{m}(\nabla v, \nabla v) \right] v u \, d\mu$$

$$-pt^{\bar{a}+1} \int_{M} \left[\left(b \Delta_{p,f} v + \frac{\bar{a}}{t} \right)^{2} + \frac{b}{m-n} \left(\left| \nabla v \right|^{p-2} \nabla v \cdot \nabla f - (m-n) \frac{\bar{a}}{mbt} \right)^{2} \right] v u \, d\mu.$$

Remark 1.3. When K > 0, m = n and f = const., W-entropy formula (1.13) is new even for doubly nonlinear diffusion equation (1.7) on the closed Riemannian manifold. When K = 0, m = n and f = const., W-entropy (1.15) is just (1.8).

Theorem 1.4. Let (M^n, g) be a closed n-dimensional Riemannian manifold with Ricci curvature bounded below, i.e., $\text{Ric} \ge -Kg$, $K \ge 0$. Let u be a smooth positive solution to (1.7) and $v = \frac{\gamma}{b}u^b$. For any $b = \gamma - \frac{1}{p-1} > 0$, define the Perelman-type W-entropy

$$(1.16) W_K(v,t) := \sigma_K \beta_K \int_M \left[(b+1) \frac{|\nabla v|^p}{v} - \left(\frac{1}{\beta_K} + \frac{\dot{\sigma}_K}{\sigma_K} \right) \right] v u \, dV.$$

Then we have

$$\frac{d}{dt} \mathcal{W}_K(v,t) \leq -pb\sigma_K \beta_K \int_M \left| |\nabla v|^{p-2} \nabla_i \nabla_j v + \frac{\eta_K}{nb} a_{ij} \right|_A^2 vu \, dV$$

$$-p\sigma_K \beta_K \int_M \left(b|\nabla v|^{2p-4} (\operatorname{Ric} + Kg)(\nabla v, \nabla v) + (b\Delta_p v + \eta_K)^2 vu \, dV, \right)$$

where $a = \frac{nb}{nb(p-1)+p}$, $D = \frac{\overline{K}}{b+1}$, $\overline{K} = \frac{pbK}{2} \sup_{M \times [0,T)} |\nabla v|^{p-2}v$, $\sigma_K = (e^{Dt} \sinh(Dt))^a$, $\beta_K = \frac{\sinh(2Dt)}{2D}$ and $\eta_K = \frac{2aD}{1-e^{-2Dt}}$. Moreover, if $\text{Ric} \geq -K$ for $K \geq 0$, then $\mathcal{W}_K(v,t)$ is monotone decreasing along the doubly nonlinear diffusion equation (1.7).

Remark 1.5. When K > 0 and $\gamma = 1$, our results are even new for the weighted parabolic p-Laplacian equation on the weighted Riemannian manifolds. See details in Corollary 3.2. When K > 0 and p = 2, W-entropy formulae have been obtained by the author in [29].

In the second part of this paper, we study the differential Harnack inequality for WDNE on wighted Riemannian manifold. In the classic paper [20], Li-Yau proved differential Harnack inequality (Li-Yau estimate) for positive solution to the heat equation on an n-dimensional complete Riemannian manifold with $\text{Ric} \geq -Kg$, where K is a positive constant, that is, for all $\alpha > 1$

$$\frac{|\nabla u|^2}{u^2} - \alpha \frac{u_t}{u} \le \frac{\alpha^2}{2(\alpha - 1)} nK + \alpha^2 \frac{n}{2t}.$$

In 1993, Hamilton [6] derived another gradient estimate

$$\frac{|\nabla u|^2}{u^2} - e^{2Kt} \frac{u_t}{u} \le e^{4Kt} \frac{n}{2t}.$$

In 2011, Li-Xu [19] generalized Li-Yau type estimate.

$$\frac{|\nabla u|^2}{u^2} - \left(1 + \frac{\sinh(Kt)\cosh(Kt) - Kt}{\sinh^2(Kt)}\right) \frac{u_t}{u} \le \frac{nK}{2} \left(1 + \coth(Kt)\right).$$

Recently, B. Qian [25] extended Li-Yau and Hamilton type estimates under some proper assumptions of $\alpha(t)$ and $\varphi(t)$.

$$\frac{|\nabla u|^2}{u^2} - \alpha(t) \frac{u_t}{u} \le \varphi(t).$$

It is natural to prove differential Harnack esimtates for nonlinear equations. In [7,21], various differential Harnack estimates for porous medium equation on Riemannian manifolds with Ricci curvature bounded below are derived. In [30], the author obtained a sharp Li-Yau estimate for doubly nonlinear diffusion equation (1.7) on compact Riemannian manifold with nonnegative Ricci curvature,

$$\frac{|\nabla v|^p}{v} - \frac{v_t}{v} \le \frac{a}{t},$$

where $v = \frac{\gamma}{b}u^b$, $b = \gamma - \frac{1}{p-1} > 0$ and $a = \frac{nb}{nb(p-1)+p}$. In recent papers [3] and [33], the authors got Li-Yau type and elliptic gradient estimates for doubly nonlinear equations on Riemannian manifold with Ricci curvature bounded below, respectively.

Motivated by previous works, especially in [25] by B. Qian, we obtain various global differential Harnack estimates for WDNE on closed weighted Riemanian manifolds with curvature dimensional condition CD(-K,m).

Now we make two assumptions on any positive function $\sigma(t) \in C^1(M)$ (see [25]).

(A1) For any
$$t > 0$$
, $\sigma(t) > 0$, $\sigma'(t) > 0$, $\lim_{t \to 0} \sigma(t) = 0$ and $\lim_{t \to 0} \frac{\sigma(t)}{\sigma'(t)} = 0$;

(A2) For any
$$T > 0$$
, $\frac{(\sigma')^2}{\sigma}$ is continuous and integrable on the interval $[0, T)$.

Theorem 1.6. Let $(M^n, g, d\mu)$ be a closed weighted Riemannian manifold with CD(-K, m) condition for $K \geq 0$. Let v(x, t) be a positive solution to equation (1.11). For any b > 0, we have

(1.20)
$$\frac{|\nabla v|^p}{v} - \alpha(t) \frac{v_t}{v} \le \varphi(t).$$

Here

(1.21)
$$\alpha(t) = 1 + \frac{2\overline{K}}{\sigma} \int_0^t \sigma(s) ds,$$

$$\varphi(t) = \overline{K}\overline{a} + \frac{\overline{K}^2 \overline{a}}{\sigma} \int_0^t \sigma(s) ds + \frac{\overline{a}}{4\sigma} \int_0^t \frac{(\sigma'(s))^2}{\sigma(s)} ds,$$

and $\sigma(t)$ is any function satisfying the assumptions (A1) and (A2), $\bar{a} = \frac{mb}{mb(p-1)+p}$, $\overline{K} = \frac{pbK}{2} \sup_{M \times (0,T]} (v|\nabla v|^{p-2})$.

By choosing different $\sigma(t)$, we can obtain various differential Harnack inequalities, which are also new for the weighted doubly nonlinear diffusion equation.

Corollary 1.7. Let $(M, g, d\mu)$ be a closed weighted Riemannian manifold with CD(-K, m) condition. Let v be a smooth positive solution to (1.11). Then we have the following estimates:

(1) Linearized Li-Xu-Qian type: $\sigma(t) = t^{\beta}$ for $\beta > 1$,

$$(1.22) \qquad \frac{|\nabla v|^p}{v} - \left(1 + \frac{2\overline{K}t}{\beta+1}\right) \frac{v_t}{v} \le \overline{a} \left(\frac{\beta^2}{4(\beta-1)} \frac{1}{t} + \overline{K} + \frac{\overline{K}^2 t}{\beta+1}\right).$$

In particular, $\beta = 2$, $\sigma(t) = t^2$,

$$(1.23) \qquad \frac{|\nabla v|^p}{v} - \left(1 + \frac{2}{3}\overline{K}t\right)\frac{v_t}{v} \le \overline{a}\left(\frac{1}{t} + \overline{K} + \frac{1}{3}\overline{K}^2t\right).$$

(2) Li-Xu type: $\sigma(t) = \sinh^2(\overline{K}t)$

$$(1.24) \quad \frac{|\nabla v|^p}{v} - \left(1 + \frac{\sinh(\overline{K}t)\cosh(\overline{K}t) - \overline{K}t}{\sinh^2(\overline{K}t)}\right) \frac{v_t}{v} \le \overline{a}\overline{K}\left(1 + \coth(\overline{K}t)\right).$$

 $(3) \ \ \textit{Baudoin-Vatamanelu-Qian type:} \ \sigma(t) = e^{-\frac{2\overline{K}t}{\beta+1}} (1-e^{-\frac{2\overline{K}t}{\beta+1}})^{\beta} \ \ \textit{with} \ \beta > 1,$

$$(1.25) \qquad \frac{|\nabla v|^p}{v} - e^{\frac{2\overline{K}t}{\beta+1}} \frac{v_t}{v} \le \frac{\beta^2 \overline{K}\overline{a}}{2(\beta^2 - 1)} \frac{e^{\frac{4\overline{K}t}{\beta+1}}}{e^{\frac{2\overline{K}t}{\beta+1}} - 1}.$$

In particular, $\beta = 2$, $\sigma(t) = e^{-\frac{2\overline{K}t}{3}}(1 - e^{-\frac{2\overline{K}t}{3}})^2$

$$(1.26) \qquad \frac{|\nabla v|^p}{v} - e^{\frac{2\overline{K}t}{3}} \frac{v_t}{v} \le \frac{2\overline{K}\bar{a}}{3} \frac{e^{\frac{4\overline{K}t}{3}}}{e^{\frac{2\overline{K}t}{3}} - 1}.$$

Remark 1.8. (1) When p=2, $\gamma=1$ and f=const., the results in Theorem 1.6 and Corollary 1.7 reduce to the linear case in [19,25].

- (2) When p=2 and $\gamma>1$, the estimate (1.20) reduces the case of the weighted porous medium equation, which has been proved in [29] by the author.
- (3) Theorem 1.6 is new for non-weighted case. In [3], the authors obtained Li-Xu type estimates for the doubly nonlinear diffusion equation, but when K = 0, their estimates are not optimal.

Theorem 1.9 (Hamilton type estimate). Let $(M^n, g, d\mu)$ be a closed weighted Riemannian manifold satisfying CD(-K, m) condition for K > 0. Let v(x, t) be a positive solution to equation (1.11), for any b > 0, we have

(1.27)
$$\frac{|\nabla v|^p}{v} - e^{2\overline{K}t} \frac{v_t}{v} \le e^{4\overline{K}t} \frac{\overline{a}}{t},$$

where $\overline{K} = \frac{pbK}{2} \sup_{M \times [0,T)} (v|\nabla v|^{p-2}).$

Integrating on minimizing path for estimates in Theorem 1.6 and Corollary 1.7, we can prove the Harnack inequalities for positive solutions to WDNE.

Corollary 1.10. For any (x_1, t_1) and (x_2, t_2) with $0 < t_1 \le t_2 < T$, we have

(1.28)
$$v(x_1, t_1) - v(x_2, t_2) \leq v_{\max} \int_{t_1}^{t_2} \frac{\varphi(t)}{\alpha(t)} dt + \frac{p-1}{p^{p^*}} \frac{d(x_2, x_1)^{p^*}}{(t_2 - t_1)^{p^*}} \int_{t_1}^{t_2} \alpha^{\frac{1}{p-1}}(t) dt$$

and

$$(1.29) \qquad \frac{v(x_1, t_1)}{v(x_2, t_2)} \\ \leq \exp\left(\int_{t_1}^{t_2} \frac{\varphi(t)}{\alpha(t)} dt + \frac{p-1}{p^{p^*}} \frac{1}{v_{\max}} \frac{d(x_2, x_1)^{p^*}}{(t_2 - t_1)^{p^*}} \int_{t_1}^{t_2} \alpha^{\frac{1}{p-1}}(t) dt\right),$$

where $p^* = \frac{p}{p-1}$ and $v_{\max} = \sup_{M \times [0,T)} v$.

When $(M,g,d\mu)$ has nonnegative m-Bakry-Emery Ricci curvature, i.e., CD(0,m)-condition, we can prove an optimal Li-Yau type estimates, which is a generalization for the case m=n in [30].

Theorem 1.11 (Optimal Li-Yau type estimate). Let $(M, g, d\mu)$ be a closed weighted Riemannian manifold with CD(0, m)-condition. Let v be a smooth solution to (1.11). Then we have

(1) for any $(p-1)\gamma > 1$,

$$\frac{|\nabla v|^p}{v} - \frac{v_t}{v} \le \frac{\bar{a}}{t};$$

(2) for any $1 - \frac{p}{m} < (p-1)\gamma < 1$,

$$\frac{|\nabla v|^p}{v} - \frac{v_t}{v} \ge \frac{\bar{a}}{t}.$$

Moreover, these estimates are optimal, i.e., when u is a fundamental solution to (1.9) on \mathbb{R}^m , equality holds in (1.30) and (1.31).

This paper is organized as follows. In Section 2, we derive some useful evolution equations by the weighted p-Bochner formula. In Section 3 we prove the \mathcal{W} -entropy monotonicity formula, i.e., Theorem 1.1. In Section 4, we obtain Qian type, Hamilton type and optimal Li-Yau type estimates, i.e., Theorem 1.6, Theorem 1.9 and Theorem 1.11. Finally, Harnack inequalities are derived as applications.

2. Nonlinear Bochner formulae and evolution equations

Let $(M,g,d\mu)$ be a closed weighted Riemannian manifold. Suppose u is a smooth positive solution to (1.9) and $v=\frac{\gamma}{b}u^b$ satisfies (1.11). Assume that $w:=|\nabla v|^2>0$ on a region of M and define the linearized operator of weighted p-Laplacian at point v

(2.1)
$$\mathcal{L}_f(\psi) := \operatorname{div}_f(w^{\frac{p}{2} - 1} A(\nabla \psi))$$

and its parabolic operator

$$(2.2) \square_f := \partial_t - bv \mathcal{L}_f,$$

where A is a tensor and defined by

$$A = g + (p-2)\frac{\nabla v \otimes \nabla v}{w}.$$

Thus,

$$(2.3) \qquad \Box_f v = |\nabla v|^p - (p-2)bv\Delta_{p,f}v.$$

Lemma 2.1. Let β be a constant. Then we have the following evolution equations:

$$(2.4) \qquad \Box_f v_t = b v_t \Delta_{p,f} v + p w^{\frac{p}{2} - 1} \langle \nabla v, \nabla v_t \rangle,$$

(2.5)
$$\Box_f v^{\beta} = \beta \left(1 - b(p-1)(\beta-1) \right) v^{\beta-1} w^{\frac{p}{2}} - \beta b(p-2) v^{\beta} \Delta_{p,f} v,$$

$$(2.6) \qquad \Box_f w = p w^{\frac{p}{2} - 1} \langle \nabla v, \nabla w \rangle + 2b w \Delta_{p,f} v - (\frac{p}{2} - 1)b v w^{\frac{p}{2} - 2} |\nabla w|^2$$

$$-2bvw^{\frac{p}{2}-1}\Big(|\nabla\nabla v|^2+\mathrm{Ric}_f(\nabla v,\nabla v)\Big),$$

$$(2.7) \qquad \Box_f(w^{\frac{p}{2}}) = pw^{\frac{p}{2}-1} \langle \nabla v, \nabla w^{\frac{p}{2}} \rangle - pbvw^{p-2} \Big(|\nabla \nabla v|_A^2 + \operatorname{Ric}_f(\nabla v, \nabla v) \Big)$$
$$+ pbw^{\frac{p}{2}} \Delta_{p,f} v.$$

Proof. By the definition of \mathcal{L}_f and \square_f in (2.1) and (2.2), a direct calculation implies that

$$\frac{\partial}{\partial t}(\Delta_{p,f}v) = \operatorname{div}_{f}\left(\left(w^{\frac{p}{2}-1}\nabla v_{t} + \left(\frac{p}{2}-1\right)w^{\frac{p}{2}-2}w_{t}\nabla v\right)\right)
= \operatorname{div}_{f}\left(w^{\frac{p}{2}-1}\left(\nabla v_{t} + (p-2)\frac{\langle\nabla v, \nabla v_{t}\rangle}{w}\nabla v\right)\right)
= \operatorname{div}_{f}(|\nabla v|^{p-2}A(\nabla v_{t})) = \mathcal{L}_{f}(v_{t}),$$

then

$$\Box_f v_t = \partial_t v_t - bv \mathcal{L}_f(v_t)$$

$$= \partial_t v_t - \partial_t (bv \Delta_{p,f} v) + bv_t \Delta_{p,f} v$$

$$= p w^{\frac{p}{2} - 1} \langle \nabla v, \nabla v_t \rangle + bv_t \Delta_{p,f} v.$$

There exists a nonlinear Bochner formula for \mathcal{L}_f (see [31]),

(2.8)
$$\mathcal{L}_f w = 2w^{\frac{p}{2}-1} \left(|\nabla \nabla v|^2 + \operatorname{Ric}_f(\nabla v, \nabla v) \right) + 2\langle \nabla v, \nabla \Delta_{p,f} v \rangle + \left(\frac{p}{2} - 1 \right) w^{\frac{p}{2}-2} |\nabla w|^2.$$

Hence,

$$\Box_{f}w = w_{t} - bv\mathcal{L}_{f}(w)$$

$$= 2\nabla v \cdot \nabla \left(bv\Delta_{p,f}v + w^{\frac{p}{2}}\right) - 2bvw^{\frac{p}{2}-1}(|\nabla\nabla v|^{2} + \operatorname{Ric}_{f}(\nabla v, \nabla v))$$

$$- bv\left(2\langle\nabla v, \nabla\Delta_{p,f}v\rangle + (\frac{p}{2} - 1)|\nabla w|^{2}w^{\frac{p}{2}-2}\right)$$

$$= 2bw\Delta_{p,f}v + pw^{\frac{p}{2}-1}\langle\nabla v, \nabla w\rangle - (\frac{p}{2} - 1)bv|\nabla w|^{2}w^{\frac{p}{2}-2}$$

$$- 2bvw^{\frac{p}{2}-1}\left(|\nabla\nabla v|^{2} + \operatorname{Ric}_{f}(\nabla v, \nabla v)\right)$$

and

$$\Box_{f}(w^{\frac{p}{2}}) = \partial_{t}w^{\frac{p}{2}} - bv\mathcal{L}_{f}(w^{\frac{p}{2}})
= \frac{p}{2}w^{\frac{p}{2}-1}w_{t} - \frac{p}{2}bve^{f}\operatorname{div}\left(e^{-f}(w^{\frac{p}{2}-1})w^{\frac{p}{2}-1}A(\nabla w)\right)
= \frac{p}{2}w^{\frac{p}{2}-1}\Box_{f}w - \frac{p}{2}(\frac{p}{2}-1)bvw^{p-3}\nabla w \cdot A(\nabla w)
= \frac{p}{2}w^{\frac{p}{2}-1}\left(2bw\Delta_{p,f}v + pw^{\frac{p}{2}-1}\langle\nabla v, \nabla w\rangle - (\frac{p}{2}-1)bv|\nabla w|^{2}w^{\frac{p}{2}-2}\right)
- pbvw^{p-2}\left(|\nabla\nabla v|^{2} + \operatorname{Ric}_{f}(\nabla v, \nabla v)\right)$$

$$-\frac{p}{2}(\frac{p}{2}-1)bvw^{p-3}\Big(|\nabla w|^2+(p-2)\frac{|\nabla v\cdot\nabla w|^2}{w}\Big)$$

$$=pbw^{\frac{p}{2}}\Delta_{p,f}v+pw^{\frac{p}{2}-1}\langle\nabla v,\nabla w^{\frac{p}{2}}\rangle$$

$$-pbvw^{p-2}\Big(|\nabla\nabla v|_A^2+\mathrm{Ric}_f(\nabla v,\nabla v)\Big),$$

where
$$|\nabla \nabla v|_A^2 = |\nabla \nabla v|^2 + \frac{p-2}{2} \frac{|\nabla w|^2}{w} + \frac{(p-2)^2}{4} \frac{|\nabla v \cdot \nabla w|^2}{w^2}$$
.

Proposition 2.2. For a constant α , let $y = \frac{|\nabla v|^p}{v}$, $z = \frac{v_t}{v}$ and define

$$F_{\alpha} := \alpha \frac{v_t}{v} - \frac{|\nabla v|^p}{v} = \alpha z - y.$$

Then we have

(2.9)
$$\Box_{f} F_{\alpha} = \delta w^{\frac{p}{2} - 1} \langle \nabla v, \nabla F_{\alpha} \rangle + p b w^{p-2} \left(|\nabla \nabla v|_{A}^{2} + \operatorname{Ric}_{f}(\nabla v, \nabla v) \right) + (p-1) \left(F_{1}^{2} + (\alpha - 1) \left(\frac{v_{t}}{v} \right)^{2} \right),$$

where $\delta = 2\gamma(p-1) + (p-2)$. In particular, when $\alpha = 1$,

$$F_1 = \frac{v_t}{v} - \frac{|\nabla v|^p}{v} = b\Delta_{p,f}v$$

and

$$(2.10) \qquad \Box_f(F_1) = \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla F_1 \rangle + pbw^{p-2} \Big(|\nabla \nabla v|_A^2 + \operatorname{Ric}_f(\nabla v, \nabla v) \Big)$$
$$+ (p-1)F_1^2.$$

Proof. Following the proof in [30], a useful formula for operator \Box_f is

$$(2.11) \qquad \Box_f\left(\frac{h}{g}\right) = \frac{\Box_f h}{g} - \frac{h\Box_f g}{g^2} + 2bvw^{\frac{p}{2}-1} \left\langle A\left(\nabla\left(\frac{f}{g}\right)\right), \nabla\log g\right\rangle.$$

Applying (2.11) and Lemma 2.1, we have

$$(2.12) \qquad \Box_{f} \left(\frac{|\nabla v|^{p}}{v} \right)$$

$$= \frac{1}{v} \left((2p - 2)w^{\frac{p}{2}} F_{1} + pw^{\frac{p}{2} - 1} \langle \nabla v, \nabla w^{\frac{p}{2}} \rangle \right)$$

$$- pbw^{p - 2} \left(|\nabla \nabla v|_{A}^{2} + \operatorname{Ric}_{f} (\nabla v, \nabla v) \right)$$

$$- \frac{w^{p}}{v^{2}} + 2bvw^{\frac{p}{2} - 1} \left\langle A \left(\nabla \left(\frac{w^{\frac{p}{2}}}{v} \right) \right), \nabla \log v \right\rangle,$$

and

$$(2.13) \qquad \Box_f \left(\frac{v_t}{v}\right) = \frac{1}{v} \left((p-1)F_1 v_t + p w^{\frac{p}{2} - 1} \langle \nabla v, \nabla v_t \rangle \right) - \frac{v_t}{v} \frac{w^{p/2}}{v} + 2bv w^{\frac{p}{2} - 1} \left\langle A \left(\nabla \left(\frac{v_t}{v} \right) \right), \nabla \log v \right\rangle.$$

Combining (2.12) and (2.13), we get

$$\begin{split} \Box_f F_\alpha &= 2bvw^{\frac{p}{2}-1} \left\langle \nabla \log v, A(\nabla F_\alpha) \right\rangle + pbw^{p-2} \Big(|\nabla \nabla v|_A^2 + \mathrm{Ric}_f(\nabla v, \nabla v) \Big) \\ &+ (p-1)F_1 \Big(\alpha \frac{v_t}{v} - \frac{pw^{\frac{p}{2}}}{v} \Big) + \frac{w^p}{v^2} - \alpha \frac{v_t}{v} \frac{w^{p/2}}{v} \\ &+ pw^{\frac{p}{2}-1} \left\langle \nabla \log v, \nabla (\alpha v_t - w^{\frac{p}{2}}) \right\rangle. \end{split}$$

A direct calculation implies that

$$\langle \nabla \log v, \nabla (vF_{\alpha}) \rangle = \langle \nabla v, \nabla F_{\alpha} \rangle + F_{\alpha} \frac{|\nabla v|^2}{v}$$

then we have

$$\Box_f F_\alpha = w^{\frac{p}{2} - 1} \left\langle \nabla v, \left(2bA(\nabla F_\alpha) + p\nabla F_\alpha \right) \right\rangle$$

$$+ pbw^{p-2} \left(|\nabla \nabla v|_A^2 + \operatorname{Ric}_f(\nabla v, \nabla v) \right)$$

$$+ (p-1)F_1 \left(\alpha \frac{v_t}{v} - \frac{2w^{\frac{p}{2}}}{v} \right) + \frac{w^p}{v^2} - \alpha \frac{v_t}{v} \frac{w^{\frac{p}{2}}}{v} + \frac{pw^{\frac{p}{2}}}{v} F_\alpha.$$

Now we rewrite the last five terms as

$$(p-1)(z-y)(\alpha z - 2y) + y^2 - \alpha yz + py(\alpha z - y) = (p-1)((y-z)^2 + (\alpha - 1)z^2).$$

Which gives the desired formula (2.9). When $\alpha = 1$, (2.10) is a direct result of (2.9).

3. Entropy formulae

Applying the weighted nonlinear Bochner-type formula in Lemma 2.1, we get the following integral formulae.

Lemma 3.1. Let u and v be positive solutions to (1.9) and (1.11). Then we have

(3.1)
$$\frac{d}{dt} \int_M vu \, d\mu = \int_M bv(\Delta_{p,f}v)u \, d\mu = -(b+1) \int_M |\nabla v|^p u \, d\mu$$

and

$$(3.2) \ \frac{d^2}{dt^2} \int_M vu \, d\mu = p \int_M \left(bw^{p-2} \left(|\nabla \nabla v|_A^2 + \mathrm{Ric}_f(\nabla v, \nabla v) \right) + (b\Delta_{p,f} v)^2 \right) vu \, d\mu.$$

Proof. Note that $\nabla v = \gamma u^{b-1} \nabla u$. Then

(3.3)
$$\nabla u^{\gamma} = \nabla v u^{\frac{1}{p-1}}, \quad u \nabla v = b v \nabla u.$$

Combining (3.3), (1.9) and (1.11), we have

$$\begin{split} \frac{d}{dt} \int_{M} vu \, d\mu &= \int_{M} \left[\left(bv(\Delta_{p,f} v) + |\nabla v|^{p} \right) u + v(\Delta_{p,f} u^{\gamma}) \right] d\mu \\ &= \int_{M} bv(\Delta_{p,f} v) u \, d\mu + \int_{M} |\nabla v|^{p} u \, d\mu - \int_{M} \nabla v \cdot \nabla u^{\gamma} |\nabla u^{\gamma}|^{p-2} \, d\mu \\ &= \int_{M} bv(\Delta_{p,f} v) u \, d\mu. \end{split}$$

Integration by parts yields that

$$\int_{M} bv(\Delta_{p,f}v)u \, d\mu = \gamma \int_{M} (\Delta_{p,f}v)u^{b+1} \, d\mu = -\gamma \int_{M} \nabla v \cdot \nabla u^{b+1} |\nabla v|^{p-2} \, d\mu$$
$$= -(b+1) \int_{M} |\nabla v|^{p} u \, d\mu.$$

Applying (1.9), (1.11) and $\partial_t = \Box_f + bv\mathcal{L}_f$, we have

$$\frac{d}{dt} \int_{M} bv(\Delta_{p,f}v)u \, d\mu = \int_{M} \frac{\partial}{\partial t} \Big(b\Delta_{p,f}v \Big) vu \, d\mu + \int_{M} \frac{\partial}{\partial t} (vu)b\Delta_{p,f}v \, d\mu$$

$$= \int_{M} \Big(\Box_{f} (b\Delta_{p,f}v) + bv\mathcal{L}_{f} (b\Delta_{p,f}v) \Big) vu \, d\mu$$

$$+ \int_{M} b\Delta_{p,f}v \Big((\Delta_{p,f}u^{\gamma})v + (bv\Delta_{p,f}v + |\nabla v|^{p})u \Big) \, d\mu.$$

By using (2.10), we have

$$\frac{d}{dt} \int_{M} bv(\Delta_{p,f}v)u \, d\mu$$

$$= \int_{M} p \left[bw^{p-2} \left(|\nabla \nabla v|_{A}^{2} + \operatorname{Ric}_{f}(\nabla v, \nabla v) \right) + (b\Delta_{p,f}v)^{2} \right] vu \, d\mu$$

$$+ (2\gamma(p-1) + (p-2))b \int_{M} w^{\frac{p}{2}-1} \left\langle \nabla v, \nabla \Delta_{p,f}v \right\rangle vu \, d\mu$$

$$+ b^{2} \int_{M} \mathcal{L}_{f}(\Delta_{p,f}v)v^{2}u \, d\mu + b \int_{M} \Delta_{p,f}v \left((\Delta_{p,f}u^{\gamma})v + |\nabla v|^{p}u \right) d\mu.$$

Note that $b\nabla(v^2u) = (2b+1)uv \nabla v$ and integration by parts,

$$b^{2} \int_{M} \mathcal{L}_{f}(\Delta_{p,f}v) v^{2} u \, d\mu = -b^{2} \int_{M} \langle \nabla(v^{2}u), A(\nabla \Delta_{p,f}v) \rangle |\nabla v|^{p-2} \, d\mu$$
$$= -(2b+1)(p-1)b \int_{M} \langle \nabla v, \nabla \Delta_{p,f}v \rangle |\nabla v|^{p-2} v u \, d\mu.$$

Finally, (3.3) and integration by parts again imply that

$$b \int_{M} v \Delta_{p,f} v(\Delta_{p,f} u^{\gamma}) d\mu$$

$$= -b \int_{M} \langle \nabla(v \Delta_{p,f} v), \nabla u^{\gamma} \rangle |\nabla u^{\gamma}|^{p-2} d\mu$$

$$= -b \int_{M} \Delta_{p,f} v |\nabla v|^{p} u d\mu - b \int_{M} \langle \nabla v, \nabla \Delta_{p,f} v \rangle |\nabla v|^{p-2} v u d\mu.$$

Putting these equalities together, we get the desired formula (3.2).

Proof of Theorem 1.1. Define the Shannon type entropy

$$\mathcal{N}_K(t) := -\sigma_K(t) \int_M vu \, d\mu,$$

where $\sigma_K(t)$ is a function of t, then by the integral formula (3.1), we have

(3.4)
$$\frac{d}{dt}\mathcal{N}_{K}(t) = -\dot{\sigma}_{K} \int_{M} vu \, d\mu - \sigma_{K} \int_{M} b(\Delta_{p,f}v) vu \, d\mu$$
$$= -\sigma_{K} \int_{M} (b\Delta_{p,f}v + (\log \sigma_{K})') vu \, d\mu,$$

where \cdot and ' denote the time derivative.

By the formulae (3.2), (3.4) and the definition of

$$\overline{K} = \frac{pbK}{2} \sup_{M \times [0,T)} |\nabla v|^{p-2} v,$$

we have

$$\frac{d^{2}}{dt^{2}}\mathcal{N}_{K}(t) = -\sigma_{K}\frac{d^{2}}{dt^{2}}\int_{M}vu\,d\mu - 2\dot{\sigma}_{K}\frac{d}{dt}\int_{M}vu\,d\mu - \ddot{\sigma}_{K}\int_{M}vu\,d\mu$$

$$= -\sigma_{K}\int_{M}p\left(bw^{p-2}\left(|\nabla\nabla v|_{A}^{2} + \operatorname{Ric}_{f}(\nabla v, \nabla v)\right) + (b\Delta_{p,f}v)^{2}\right)vu\,d\mu$$

$$+ \frac{2\dot{\sigma}_{K}}{\sigma_{K}}\frac{d}{dt}\mathcal{N}_{K} + \left(\frac{\ddot{\sigma}_{K}}{\sigma_{K}} - \frac{2\dot{\sigma}_{K}^{2}}{\sigma_{K}^{2}}\right)\mathcal{N}_{K}.$$
(3.5)

When b > 0, v > 0, we have $\overline{K} > 0$, then

$$(3.6) \quad \frac{d^{2}}{dt^{2}} \mathcal{N}_{K}(t)$$

$$\leq -\sigma_{K} \int_{M} p\left(bw^{p-2} \left(|\nabla \nabla v|_{A}^{2} + (\operatorname{Ric}_{f} + Kg)(\nabla v, \nabla v)\right) + (b\Delta_{p,f}v)^{2}\right) vu \, d\mu$$

$$+ 2\left(\frac{\dot{\sigma}_{K}}{\sigma_{K}} + \frac{\overline{K}}{b+1}\right) \frac{d}{dt} \mathcal{N}_{K} + \left(\frac{\ddot{\sigma}_{K}}{\sigma_{K}} - \frac{2\dot{\sigma}_{K}^{2}}{\sigma_{K}^{2}} - \frac{2\overline{K}}{b+1} \frac{\dot{\sigma}_{K}}{\sigma_{K}}\right) \mathcal{N}_{K}.$$

Define the Perelman type W-entropy

(3.7)
$$\mathcal{W}_K(t) := \frac{1}{\dot{\alpha}_K(t)} \frac{d}{dt} (\alpha_K(t) \mathcal{N}_K(t)) = \mathcal{N}_K + \beta_K(t) \frac{d}{dt} \mathcal{N}_K(t)$$

$$= -\sigma_K \int_M \left(\beta_K (b\Delta_{p,f} v) + \left(1 + (\log \sigma_K)' \beta_K \right) \right) v u \, d\mu,$$

$$= \sigma_K \beta_K \int_M \left[(b+1) \frac{|\nabla v|^p}{v} - \left(\frac{1}{\beta_K} + \frac{\dot{\sigma}_K}{\sigma_K} \right) \right] v u \, d\mu,$$

where $\beta_K(t) = \frac{\alpha_K}{\dot{\alpha}_K}$, then

$$\frac{d}{dt}\mathcal{W}_K(t) = \beta_K \left(\frac{d^2}{dt^2} \mathcal{N}_K + \frac{1 + \dot{\beta}_K}{\beta_K} \frac{d}{dt} \mathcal{N}_K \right).$$

Combining (3.4) and (3.6), we have

$$(3.8) \quad \frac{d}{dt} \mathcal{W}_{K}(t)$$

$$\leq -\sigma_{K} \beta_{K} \int_{M} p \left(bw^{p-2} \left(|\nabla \nabla v|_{A}^{2} + (\operatorname{Ric}_{f} + Kg)(\nabla v, \nabla v) \right) + (b\Delta_{p,f} v)^{2} \right) vu \, d\mu$$

$$+2\beta_{K} \left(\frac{\dot{\sigma}_{K}}{\sigma_{K}} + \frac{1 + \dot{\beta}_{K}}{2\beta_{K}} + \frac{\overline{K}}{b+1} \right) \frac{d}{dt} \mathcal{N}_{K} + \beta_{K} \left(\frac{\ddot{\sigma}_{K}}{\sigma_{K}} - \frac{2\dot{\sigma}_{K}^{2}}{\sigma_{K}^{2}} - \frac{2\overline{K}}{b+1} \frac{\dot{\sigma}_{K}}{\sigma_{K}} \right) \mathcal{N}_{K}.$$

Using the identity

$$(3.9) b \left| w^{\frac{p}{2} - 1} \nabla_i \nabla_j v + \frac{\eta_K(t)}{mb} a_{ij} \right|_A^2$$

$$= b w^{p-2} |\nabla \nabla v|_A^2 + \frac{2\eta_K}{m} w^{\frac{p}{2} - 1} \operatorname{tr}_A(\nabla \nabla v) + \frac{n\eta_K^2}{m^2 b}$$

$$= b w^{p-2} |\nabla \nabla v|_A^2 + \frac{2\eta_K}{m} \left(\Delta_{p,f} v + w^{\frac{p}{2} - 1} \langle \nabla f, \nabla v \rangle \right) + \frac{n\eta_K^2}{m^2 b}$$

and putting (3.9) into (3.8), we get

(3.10)

$$\frac{d}{dt} \mathcal{W}_{K}(t)$$

$$\leq -\sigma_{K}\beta_{K} \int_{M} pb \left(\left| w^{\frac{p}{2}-1} \nabla_{i} \nabla_{j} v + \frac{\eta_{K}}{mb} a_{ij} \right|_{A}^{2} + w^{p-2} (\operatorname{Ric}_{f}^{m} + Kg)(\nabla v, \nabla v) \right) vu \, d\mu$$

$$-\sigma_{K}\beta_{K} \int_{M} \left(p(b\Delta_{p,f} v)^{2} + 2 \left((\log \sigma_{K})' + \frac{1 + \dot{\beta}_{K}}{2\beta_{K}} + \frac{\overline{K}}{b+1} - \frac{p\eta_{K}}{mb} \right) (b\Delta_{p,f} v) \right) vu \, d\mu$$

$$-\sigma_{K}\beta_{K} \int_{M} \left((\log \sigma_{K})'' + \frac{1 + \dot{\beta}_{K}}{\beta_{K}} (\log \sigma_{K})' + ((\log \sigma_{K})')^{2} - \frac{p\eta_{K}^{2}}{mb} \right) vu \, d\mu$$

$$-\sigma_{K}\beta_{K} \int_{M} \frac{pb}{m-n} \left(w^{\frac{p}{2}-1} \langle \nabla v, \nabla f \rangle - \frac{\eta_{K}}{mb} (m-n) \right)^{2} vu \, d\mu.$$

In order to get a complete square formula in the second and third line in (3.10), we choose a proper function $\eta_K(t)$ such that

(3.11)
$$\begin{cases} p\eta_K = \lambda + \frac{1+\dot{\beta}_K}{2\beta_K} + \frac{\overline{K}}{b+1} - \frac{p}{mb}\eta_K, \\ p\eta_K^2 = \lambda' + \lambda^2 + \frac{1+\dot{\beta}_K}{\beta_K}\lambda - \frac{p}{mb}\eta_K^2, \end{cases}$$

where $\lambda = (\log \sigma_K)'$, which is equivalent to

(3.12)
$$0 = \eta_K^2 - 2\lambda \eta_K + \frac{\bar{a}}{\bar{a}+1} \left(\lambda^2 - \lambda' + 2D\lambda\right)$$
$$= \left(\eta_K - \lambda\right)^2 - \frac{1}{\bar{a}+1} \left(\lambda^2 + \bar{a} \left(\lambda' - 2D\lambda\right)\right),$$

where $D = \frac{\overline{K}}{b+1}$. Thus, a special solution of the equation (3.12) is

$$\eta_K = \lambda = \frac{2\bar{a}D}{1 - e^{-2Dt}}.$$

Inserting this back to system (3.11), we get

$$\beta_K = \frac{\sinh(2Dt)}{2D}, \ \alpha_K = D \tanh(Dt), \ \sigma_K = (e^{Dt} \sinh(Dt))^{\bar{a}} = \left(\frac{e^{2Dt} - 1}{2}\right)^{\bar{a}}.$$

Thus, from (3.10), we get the Perelma type W-entropy formula,

(3.13)

$$\frac{d}{dt} \mathcal{W}_{K}(t)$$

$$\leq -\sigma_{K} \beta_{K} \int_{M} pb \left(\left| w^{\frac{p}{2} - 1} \nabla_{i} \nabla_{j} v + \frac{\eta_{K}}{mb} a_{ij} \right|_{A}^{2} + w^{p-2} (\operatorname{Ric}_{f}^{m} + Kg)(\nabla v, \nabla v) \right) v u d\mu$$

$$-\sigma_{K} \beta_{K} \int_{M} p \left((b \Delta_{p,f} v + \eta_{K})^{2} + \frac{b}{m-n} \left(w^{\frac{p}{2} - 1} \langle \nabla v, \nabla f \rangle - (m-n) \frac{\eta_{K}}{mb} \right)^{2} \right) v u d\mu.$$

Therefore, W-entropy (3.7) is monotone decreasing along the weighted doubly nonlinear diffusion equation with CD(-K, m) condition.

Proof of Corollary 1.2. In particular, when K=0, $\sigma_0(t)=t^{\bar{a}}$, $\beta_0(t)=t$ and $\eta_0(t)=\frac{\bar{a}}{t}$, all of the inequalities become equalities in the proof of Theorem 1.1. Then we have entropy monotonicity formula for WDNE with CD(0,m) condition,

(3.14)
$$\frac{d}{dt}\mathcal{N}_{p,f}(u,t) = -t^{\bar{a}} \int_{M} \left(b\Delta_{p,f}v + \frac{\bar{a}}{t} \right) vu \, d\mu$$

and

(3.15)

$$\frac{d}{dt} \mathcal{W}_{p,f}(v,t)
= -pbt^{\bar{a}+1} \int_{M} \left[\left| w^{\frac{p}{2}-1} \nabla_{i} \nabla_{j} v + \frac{\bar{a}}{mbt} a_{ij} \right|_{A}^{2} + w^{p-2} \operatorname{Ric}_{f}^{m}(\nabla v, \nabla v) \right] v u \, d\mu
- pt^{\bar{a}+1} \int_{M} \left[\frac{b}{m-n} \left(w^{\frac{p}{2}-1} \nabla v \cdot \nabla f - \frac{\bar{a}(m-n)}{mbt} \right)^{2} + \left(b \Delta_{p,f} v + \frac{\bar{a}}{t} \right)^{2} \right] v u \, d\mu,$$

where the Shannon-type entropy and Perelman-type entropy are defined by

$$\mathcal{N}_0(t) = \mathcal{N}_{p,f}(v,t) := -t^{\bar{a}} \int_M vu \, d\mu$$

and

(3.16)
$$\mathcal{W}_0(t) = \mathcal{W}_{p,f}(v,t) := t^{\bar{a}+1} \int_M \left((b+1) \frac{|\nabla v|^p}{v} - \frac{\bar{a}+1}{t} \right) v u \, d\mu.$$

Corollary 3.2. Let $(M, g, d\mu)$ be a weighted Riemannian manifold and u be a smooth positive solution to the weighted parabolic p-Laplacian equation

(3.17)
$$\partial_t u = \Delta_{p,f}(u) := \operatorname{div}_f(|\nabla u|^{p-2} \nabla u).$$

W-entropy is defined by

$$\mathcal{W}_K(v,t) := \sigma_K \beta_K \int_M \left[\frac{p-2}{p-1} \frac{|\nabla v|^p}{v} - \left(\frac{1}{\beta_K} + \frac{\dot{\sigma}_K}{\sigma_K} \right) \right] v u \, d\mu.$$

Then we have

(3.18)

$$\frac{d}{dt}\mathcal{W}_K(v,t)$$

$$\leq -\sigma_K \beta_K \int_M pb \left(\left| |\nabla v|^{p-2} \nabla_i \nabla_j v + \frac{\eta_K}{mb} a_{ij} \right|_A^2 + |\nabla v|^{2p-4} (\operatorname{Ric}_f^m + Kg) (\nabla v, \nabla v) \right) vu \, d\mu \\ -\sigma_K \beta_K \int_M p \left(\left(b \Delta_{p,f} v + \eta_K \right)^2 + \frac{b}{m-n} \left(|\nabla v|^{p-2} \nabla v \cdot \nabla f - (m-n) \frac{\eta_K}{mb} \right)^2 \right) vu \, d\mu,$$

where
$$\bar{a} = \frac{(p-2)m}{(p-1)((p-2)m+p)}$$
, $v = \frac{p-1}{p-2}u^{\frac{p-2}{p-1}}$ is the pressure, and

$$D = \frac{p(p-2)}{2p-3}K \sup_{M \times [0,T)} v, \ \sigma_K = (e^{Dt} \sinh(Dt))^{\bar{a}}, \ \beta_K = \frac{\sinh(2Dt)}{2D}, \ \eta_K = \frac{2\bar{a}D}{1-e^{-2Dt}}.$$

Moreover, if CD(-K, m) holds for $K \geq 0$, then $W_K(v, t)$ is monotone decreasing along the weighted parabolic p-Laplacian equation (3.17).

4. Differential Harnack estimates and applications

In this section, we prove various differential Harnack estimates for WDNE on the weighed manifolds with CD(-K,m) condtion, including sharp Li-Yau type estimate, Hamilton type estimate and Li-Xu type estimate, etc.. As applications, Harnack inequalities are derived.

Proposition 4.1. Let u be a smooth positive solution to (1.9) and v satisfies (1.11). Define

$$F := \alpha(t) \frac{v_t}{v} - \frac{|\nabla v|^p}{v} + \varphi(t),$$

where $\alpha(t), \varphi(t)$ are defined in (1.21). If $\sigma(t)$ is a function of t and satisfies the assumption (A1) and (A2), then we have

$$(4.1) \qquad \Box_{f} F \geq \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla F \rangle + \bar{a} \left(\frac{b^{2}}{\bar{a}} \Delta_{p,f} v + \frac{\sigma'}{2\sigma} + \overline{K} \right)^{2} - \frac{\sigma'}{\sigma} F + (p-1)(\alpha-1) \left(\frac{v_{t}}{v} \right)^{2},$$

and

$$(4.2) \qquad \Box_{f}(\sigma F) \geq \delta \sigma w^{\frac{p}{2} - 1} \langle \nabla v, \nabla F \rangle + \bar{a} \sigma \left(\frac{b^{2}}{\bar{a}} \Delta_{p,f} v + \frac{\sigma'}{2\sigma} + \overline{K} \right)^{2} + (p - 1)(\alpha - 1)\sigma \left(\frac{v_{t}}{v} \right)^{2},$$

where $b = \gamma - \frac{1}{p-1} > 0$, $\bar{a} = \frac{mb}{mb(p-1)+p}$, $\delta = 2\gamma(p-1) + (p-2)$, $w = |\nabla v|^2$ and $\overline{K} = \frac{pbK}{2} \sup_{M \times (0,T]} (v|\nabla v|^{p-2})$.

Proof. Applying (2.9), we have

$$(4.3) \qquad \Box_f F = \delta w^{\frac{p}{2} - 1} \langle \nabla v, \nabla F \rangle + p b w^{p-2} \left(|\nabla \nabla v|_A^2 + \operatorname{Ric}_f(\nabla v, \nabla v) \right)$$
$$+ (p-1) \left((b \Delta_{p,f} v)^2 + (\alpha - 1) \left(\frac{v_t}{v} \right)^2 \right) + \alpha' \left(\frac{v_t}{v} \right) + \varphi'.$$

The elementary inequality

$$(a+b)^2 \ge \frac{a^2}{1+\epsilon} - \frac{b^2}{\epsilon}, \quad \forall \ \epsilon > 0$$

implies that

$$(4.4) w^{p-2} \Big(|\nabla \nabla v|_A^2 + \operatorname{Ric}_f(\nabla v, \nabla v) \Big)$$

$$\geq \frac{1}{n} \Big(w^{\frac{p}{2} - 1} \operatorname{tr}_A(\nabla \nabla v) \Big)^2 + w^{p-2} \operatorname{Ric}_f(\nabla v, \nabla v)$$

$$= \frac{1}{n} (\Delta_{p,f} v + w^{\frac{p}{2} - 1} \langle \nabla v, \nabla f \rangle)^2 + w^{p-2} \left(\operatorname{Ric}_f^m(\nabla v, \nabla v) + \frac{\langle \nabla v, \nabla f \rangle^2}{m - n} \right)$$

$$\geq \frac{1}{m} (\Delta_{p,f} v)^2 + w^{p-2} \operatorname{Ric}_f^m(\nabla v, \nabla v),$$

where $\epsilon = \frac{m}{n} - 1$. Combining (4.3), (4.4) and $\mathrm{Ric}_f^m \geq -K$, we get

(4.5)
$$\Box_{f}F \geq \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla F \rangle + \frac{1}{\overline{a}} (b\Delta_{p,f}v)^{2} - pbKw^{p-1} + (p-1)(\alpha-1) \left(\frac{v_{t}}{v}\right)^{2} + \alpha' \left(\frac{v_{t}}{v}\right) + \varphi'.$$

Note that ${\rm tr}_A(w^{\frac{p}{2}-1}v_{ij})=\Delta_p v$ and $\frac{pbK}{2}(v|\nabla v|^{p-2})\leq \overline{K}$, one has

$$(4.6) \qquad \Box_{f}F - \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla F \rangle$$

$$\geq \frac{b^{2}}{\bar{a}} (\Delta_{p,f}v + \eta)^{2} - \frac{2b^{2}}{\bar{a}} \eta \Delta_{p,f}v - \frac{b^{2}}{\bar{a}} \eta^{2} - pbKw^{p-1}$$

$$+ (p-1)(\alpha - 1) \left(\frac{v_{t}}{v}\right)^{2} + \alpha' \left(\frac{v_{t}}{v}\right) + \varphi'$$

$$\geq \frac{b^{2}}{\bar{a}} (\Delta_{p,f}v + \eta)^{2} + \left(\alpha' - \frac{2b}{\bar{a}} \eta\right) \frac{v_{t}}{v} - \left(2\overline{K} - \frac{2b}{\bar{a}} \eta\right) \frac{w^{\frac{p}{2}}}{v} - \frac{b^{2}}{\bar{a}} \eta^{2}$$

$$+ (p-1)(\alpha - 1)\left(\frac{v_t}{v}\right)^2 + \varphi'$$

$$= \frac{b^2}{\bar{a}}(\Delta_{p,f}v + \eta)^2 + 2\left(\overline{K} - \frac{b}{\bar{a}}\eta\right)\left(\frac{\alpha' - \frac{2b}{\bar{a}}\eta}{2\overline{K} - \frac{2b}{\bar{a}}\eta}\frac{v_t}{v} - \frac{w^{\frac{p}{2}}}{v} + \varphi\right)$$

$$+ (p-1)(\alpha - 1)\left(\frac{v_t}{v}\right)^2 + \varphi' - 2\left(\overline{K} - \frac{b}{\bar{a}}\eta\right)\varphi - \frac{b^2}{\bar{a}}\eta^2.$$

Now we choose the proper functions $\sigma(t)$ and $\eta(t)$ such that $\alpha(t)$ and $\varphi(t)$ satisfy the following system

(4.7)
$$\begin{cases} \frac{\sigma'}{\sigma} = 2(\frac{b}{\bar{a}}\eta - \overline{K}), \\ \alpha = \frac{\alpha' - \frac{2b}{\bar{a}}\eta}{2(\overline{K} - \frac{b}{\bar{a}}\eta)}, \\ \eta^2 = \frac{\bar{a}}{b^2} \left(\varphi' - 2(\overline{K} - \frac{b}{\bar{a}}\eta)\varphi\right). \end{cases}$$

Plugging (4.7) into (4.6), we have

$$(4.8) \quad \Box_f F \ge \delta w^{\frac{p}{2}-1} \left\langle \nabla v, \nabla F \right\rangle + \frac{b^2}{\bar{a}} (\Delta_{p,f} v + \eta)^2 - \frac{\sigma'}{\sigma} F + (p-1)(\alpha - 1) \left(\frac{v_t}{v}\right)^2.$$

By (4.1) and

Set

$$\Box_f G = \Box_f (\sigma F) = \sigma \Box_f F + \sigma' F,$$

we can easily get (4.2). In fact, the first equation in (4.7) is equivalent to

$$\eta(t) = \frac{\bar{a}}{2b} \left(\frac{\sigma'}{\sigma} + 2\overline{K} \right).$$

Inserting this into the last two equations in (4.7), we have

$$(\sigma \alpha)' = \sigma' + 2\overline{K}\sigma$$
 and $(\sigma \varphi)' = \frac{\overline{a}\sigma}{4} \left(\frac{\sigma'}{\sigma} + 2\overline{K}\right)^2$.

Integrating above identities on [0,t], we can obtain the exact expressions of $\alpha(t)$ and $\varphi(t)$ in (1.21).

Proof of Theorem 1.6. Since b > 0, $\bar{a} > 0$, p > 1, applying the parabolic maximum principle in (4.2), it is easy to get $F \ge 0$, that is (1.20) in Theorem 1.6.

Remark 4.2. Integrating the differential Harnack estimate (1.20) yields

$$0 \leq \int_{M} Fvu \, d\mu = \int_{M} \left(\alpha(t) \frac{v_{t}}{v} - \frac{|\nabla v|^{p}}{v} + \varphi(t) \right) vu \, d\mu$$

$$= \int_{M} \left(\alpha(b\Delta_{p,f}v) + (\alpha - 1) \frac{|\nabla v|^{p}}{v} + \varphi(t) \right) vu \, d\mu$$

$$= \int_{M} \left(\frac{\alpha b + 1}{b + 1} (b\Delta_{p,f}v) + \varphi(t) \right) vu \, d\mu.$$

$$(4.9)$$

$$(4.10) \qquad (\log \sigma_K)' = \frac{b+1}{\alpha b+1} \varphi(t),$$

we have

$$(4.11) \frac{d}{dt} \mathcal{N}_K(t) \le 0,$$

that is Shannon type entropy $\mathcal{N}_K(t)$ is monotone decreasing along WDNE. In particular, when $\alpha(t) = 1 + \frac{2}{3}\overline{K}t$ and $\varphi(t) = \overline{a}\left(\frac{1}{t} + \overline{K} + \frac{1}{3}\overline{K}^2t\right)$, by solving ODE (4.10), we have

(4.12)
$$\sigma_K(t) = e^{\frac{(b+1)\bar{a}\bar{K}t}{2b}} \left(1 + \frac{2}{3}\frac{b}{b+1}\bar{K}t\right)^{-\left(\frac{1}{4} + \frac{3}{4b^2}\right)\bar{a}} t^{\bar{a}}.$$

Proof of Theorem 1.9. Define

$$G := \alpha^{-1}F = \frac{v_t}{v} - \alpha^{-1} \frac{|\nabla v|^p}{v} + \alpha^{-1}\varphi.$$

By (4.5) and $\overline{K} = \frac{pbK}{2} \sup_{M \times [0,T)} v |\nabla v|^{p-2}$, we have

$$(4.13) \quad \Box_{f}G = (\alpha^{-1})'F + \alpha^{-1}\Box_{f}F$$

$$\geq \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla G \rangle + \frac{\alpha^{-1}}{\bar{a}} (b\Delta_{p,f}v)^{2} + (p-1)(1-\alpha^{-1}) \left(\frac{v_{t}}{v}\right)^{2}$$

$$+ \alpha'\alpha^{-1}\frac{v_{t}}{v} - 2\overline{K}\alpha^{-1}\frac{w^{\frac{p}{2}}}{v} + \alpha^{-1}\varphi' + (\alpha^{-1})'F$$

$$= \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla G \rangle + \frac{\alpha^{-1}}{\bar{a}} (b\Delta_{p,f}v)^{2} + (p-1)(1-\alpha^{-1}) \left(\frac{v_{t}}{v}\right)^{2}$$

$$+ (\log \alpha)' \left(\frac{v_{t}}{v} - 2\overline{K}[(\log \alpha)']^{-1}\alpha^{-1}\frac{w^{\frac{p}{2}}}{v} + \alpha^{-1}\varphi\right)$$

$$+ (\alpha^{-1})'F - \alpha'\alpha^{-2}\varphi + \alpha^{-1}\varphi'$$

$$\geq \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla G \rangle + \frac{e^{-2\overline{K}t}}{\bar{a}} (b\Delta_{p,f}v)^{2} + (p-1)(1-\alpha^{-1}) \left(\frac{v_{t}}{v}\right)^{2}$$

$$+ \frac{2\overline{K}\bar{a}e^{2\overline{K}t}}{t} - \frac{\bar{a}e^{2\overline{K}t}}{t^{2}}$$

$$\geq \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla G \rangle + \frac{e^{-2\overline{K}t}}{\bar{a}} (b\Delta_{p,f}v)^{2} - \frac{\bar{a}e^{2\overline{K}t}}{t^{2}},$$

where $\alpha(t) = e^{2\overline{K}t}$ and $\varphi(t) = \frac{\bar{a}}{t}e^{4\overline{K}t}$. Now we show that $G \geq 0$ on $M \times [0,T)$. Since M is closed, assume that G attains its minimum at point (x_0,t_0) and $G(x_0,t_0) < 0$. Then at (x_0,t_0) ,

$$\Box_f G < 0, \quad \nabla G = 0.$$

On the other hand, at this point.

$$0 \le \frac{\bar{a}e^{2Kt}}{t} < e^{-2Kt} \frac{|\nabla v|^p}{v} - \frac{v_t}{v} \le \frac{|\nabla v|^p}{v} - \frac{v_t}{v} = -b\Delta_{p,f}v.$$

Put this inequality into (4.13), we have

$$\Box_f G > 0.$$

This is a contradiction. Thus we have finished the proof of Theorem 1.9. \Box

Proof of Corollary 1.10. Let $\zeta(t)$ be a constant speed geodesic connected $\zeta(t_1) = x_1$ and $\zeta(t_2) = x_2$ with $|\dot{\zeta}(t)| = \frac{d(x_2, x_1)}{t_2 - t_1}$. Applying the differential Harnack estimate (1.20) and Young's inequality, we have

$$\begin{split} &v(x_2,t_2)-v(x_1,t_1)\\ &=\int_{t_1}^{t_2}v_t+\langle\nabla v,\dot{\varsigma}(t)\rangle dt\\ &\geq\int_{t_1}^{t_2}\left(\frac{1}{\alpha(t)}|\nabla v|^p-\frac{\varphi(t)}{\alpha(t)}v-\frac{1}{\alpha(t)}|\nabla v|^p-\frac{p-1}{p^{p^*}}\alpha^{\frac{1}{p-1}}(t)|\dot{\varsigma}(t)|^{p^*}\right)dt\\ &\geq-v_{max}\int_{t_1}^{t_2}\frac{\varphi(t)}{\alpha(t)}dt-\frac{p-1}{p^{p^*}}\frac{d(x_2,x_1)^{p^*}}{(t_2-t_1)^{p^*}}\int_{t_1}^{t_2}\alpha^{\frac{1}{p-1}}(t)dt \end{split}$$

and

$$\log \frac{v(x_{2}, t_{2})}{v(x_{1}, t_{1})}$$

$$= \int_{t_{1}}^{t_{2}} \left(\frac{d}{dt} \log v(x, t) + \nabla \log v \cdot \dot{\varsigma}(t)\right) dt$$

$$\geq \int_{t_{1}}^{t_{2}} \left(\frac{1}{\alpha(t)} \left(|\nabla v|^{p} - \varphi(t)\right) - \frac{1}{\alpha(t)} |\nabla v|^{p} - \frac{p-1}{p^{p^{*}}} \frac{|\dot{\varsigma}(t)|^{p^{*}}}{v_{max}} \alpha^{\frac{1}{p-1}}(t)\right) dt$$

$$\geq - \int_{t_{1}}^{t_{2}} \frac{\varphi(t)}{\alpha(t)} dt - \frac{p-1}{p^{p^{*}}} \frac{1}{v_{max}} \frac{d(x_{2}, x_{1})^{p^{*}}}{(t_{2} - t_{1})^{p^{*}}} \int_{t_{1}}^{t_{2}} \alpha^{\frac{1}{p-1}}(t) dt.$$

Here $p^* = \frac{p}{p-1}$. This finishes the proof of Corollary 1.10.

Proof of Theorem 1.11. Estimate (1.30) is a direct result when we take K=0 in (1.22), (1.24) or (1.27). In fact, we can also give a direct proof for (1.30). Using (2.10) and (4.4), for any b>0 and $\mathrm{Ric}_f^m\geq 0$, we get

$$\Box_{f}(F_{1}) \geq \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla F_{1} \rangle + \frac{pb}{m} (\Delta_{p,f} v)^{2} + (p-1)F_{1}^{2}$$
$$= \delta w^{\frac{p}{2}-1} \langle \nabla v, \nabla F_{1} \rangle + \frac{1}{\bar{a}} F_{1}^{2},$$

where $\bar{a} = \frac{mb}{(p-1)mb+p}$. Since M is closed, the standard parabolic maximum principle implies the estimate (1.30). Moreover, if we take the Barenblatt-type solution of WDNE (1.9) on \mathbb{R}^m ,

(4.14)
$$u(x,t) = t^{-\frac{\bar{a}}{b}} F(t^{-\frac{\bar{a}}{mb}} x), \quad F(\xi) = (C - \kappa |\xi|^{\frac{p}{p-1}})_{+}^{\frac{1}{b}},$$

where $\bar{a} = \frac{mb}{(p-1)mb+p}$, $\kappa = \frac{(p-1)b}{p}(\frac{\bar{a}}{mb})^{\frac{1}{p-1}}$, C is any positive constant, then equality holds in (1.30), i.e., the differential Harnack estimate (1.30) is sharp. The similar argument holds for (1.31).

References

- D. Bakry and M. Émery, Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/84, 177-206, Lecture Notes in Math., 1123, Springer, Berlin. https://doi. org/10.1007/BFb0075847
- [2] D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-00227-9
- [3] D. Chen and C. Xiong, Gradient estimates for doubly nonlinear diffusion equations, Nonlinear Anal. 112 (2015), 156-164. https://doi.org/10.1016/j.na.2014.08.017
- [4] F. Fang, X.-D. Li, and Z. Zhang, Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563–573.
- [5] A. Futaki, H. Li, and X.-D. Li, On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons, Ann. Global Anal. Geom. 44 (2013), no. 2, 105–114. https://doi.org/10.1007/s10455-012-9358-5
- [6] R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113-126. https://doi.org/10.4310/CAG.1993.v1.n1.a6
- [7] G. Huang, Z. Huang, and H. Li, Gradient estimates for the porous medium equations on Riemannian manifolds, J. Geom. Anal. 23 (2013), no. 4, 1851–1875. https://doi. org/10.1007/s12220-012-9310-8
- [8] G. Huang and H. Li, Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian, Pacific J. Math. 268 (2014), no. 1, 47-78. https://doi.org/10.2140/pjm.2014.268.47
- [9] B. Kotschwar and L. Ni, Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 1, 1-36. https://doi.org/10.24033/asens.2089
- [10] X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9) 84 (2005), no. 10, 1295-1361. https://doi.org/ 10.1016/j.matpur.2005.04.002
- [11] ______, Perelman's entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature, Math. Ann. 353 (2012), no. 2, 403-437. https://doi. org/10.1007/s00208-011-0691-y
- [12] S. Li and X.-D. Li, The W-entropy formula for the Witten Laplacian on manifolds with time dependent metrics and potentials, Pacific J. Math. 278 (2015), no. 1, 173-199. https://doi.org/10.2140/pjm.2015.278.173
- [13] _____, Harnack inequalities and W-entropy formula for Witten Laplacian on manifolds with the K-super Perelman Ricci flow, arXiv:1412.7034v1.
- [14] ______, W-entropy formulas on super Ricci flows and Langevin deformation on Wasserstein space over Riemannian manifolds, Sci. China Math. 61 (2018), no. 8, 1385-1406. https://doi.org/10.1007/s11425-017-9227-7
- [15] _____, Hamilton differential Harnack inequality and W-entropy for Witten Laplacian on Riemannian manifolds, J. Funct. Anal. 274 (2018), no. 11, 3263-3290. https://doi. org/10.1016/j.jfa.2017.09.017
- [16] _____, On Harnack inequalities for Witten Laplacian on Riemannian manifolds with super Ricci flows, Asian J. Math. 22 (2018), no. 3, 577-597. https://doi.org/10.4310/ AJM.2018.v22.n3.a10

- [17] _____, W-entropy, super Perelman Ricci flows, and (K, m)-Ricci solitons, J. Geom. Anal. 30 (2020), no. 3, 3149-3180. https://doi.org/10.1007/s12220-019-00193-4
- [18] _____, W-entropy formula and Langevin deformation of flows on Wasserstein space over Riemannian manifolds, arXiv:1604.02596.
- [19] J. Li and X. Xu, Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math. 226 (2011), no. 5, 4456-4491. https://doi.org/10.1016/j. aim.2010.12.009
- [20] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. https://doi.org/10.1007/BF02399203
- [21] P. Lu, L. Ni, J. Vázquez, and C. Villani, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds, J. Math. Pures Appl. (9) 91 (2009), no. 1, 1–19. https://doi.org/10.1016/j.matpur.2008.09.001
- [22] L. Ni, The entropy formula for linear heat equation, J. Geom. Anal. $\bf 14$ (2004), no. 1, 87–100. https://doi.org/10.1007/BF02921867
- [23] ______, Addenda to: "The entropy formula for linear heat equation, J. Geom. Anal. 14 (2004), no. 2, 369-374. https://doi.org/10.1007/BF02922078
- [24] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv.org/abs/maths0211159.
- [25] B. Qian, Remarks on differential Harnack inequalities, J. Math. Anal. Appl. 409 (2014), no. 1, 556-566. https://doi.org/10.1016/j.jmaa.2013.07.043
- [26] J. L. Vázquez, The porous medium equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.
- [27] C. Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009. https://doi.org/10.1007/978-3-540-71050-9
- [28] Y.-Z. Wang, Differential Harnack estimates and entropy formulae for weighted p-heat equations, Results Math. 71 (2017), no. 3-4, 1499–1520. https://doi.org/10.1007/ s00025-017-0675-7
- [29] ______, W-entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds, Commun. Pure Appl. Anal. 17 (2018), no. 6, 2441– 2454. https://doi.org/10.3934/cpaa.2018116
- [30] Y. Wang and W. Chen, Gradient estimates and entropy monotonicity formula for doubly nonlinear diffusion equations on Riemannian manifolds, Math. Methods Appl. Sci. 37 (2014), no. 17, 2772–2781. https://doi.org/10.1002/mma.3016
- [31] Y. Wang, J. Yang, and W. Chen, Gradient estimates and entropy formulae for weighted p-heat equations on smooth metric measure spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 4, 963–974. https://doi.org/10.1016/S0252-9602(13)60055-7
- [32] G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405. https://doi.org/10.4310/jdg/1261495336
- [33] S. Yan and L. F. Wang, Elliptic gradient estimates for the doubly nonlinear diffusion equation, Nonlinear Anal. 176 (2018), 20-35. https://doi.org/10.1016/j.na.2018.06. 004

Yu-Zhao Wang School of Mathematical Sciences Shanxi University Taiyuan, 030006, Shanxi, China Email address: wangyuzhao@sxu.edu.cn