SPHERICAL CAPS IN A CONVEX CONE

TaEkwan Um*

Abstract

We show that a compact embedded hypersurface with constant ratio of mean curvature functions in a convex cone $C \subset$ \mathbb{R}^{n+1} is part of a hypersphere if it has a point where all the principal curvatures are positive and if it is perpendicular to ∂C.

1. Introduction

Let S be a hypersurface in the $n+1$ dimensional Euclidean space \mathbb{R}^{n+1}. Its r th mean curvature function H_{r} is the r th elementary symmetric function of principal curvature function of M divided by $\binom{n}{r}$. Hence the Gauss-Kronecker curvature is H_{n} and the usual mean curvature function is $H_{1} . H_{0}$ is defined to be one. It is well known that an embedded closed hypersurface in \mathbb{R}^{n+1} with nonzero constant mean curvature function H_{r} is a round sphere [1, 6]. A closed embedded hypersurface in \mathbb{R}^{n+1} with constant ratio of mean curvature functions, $H_{k} / H_{r}=c$, is also a round sphere $[4,5]$.

Among embedded compact hypersurfaces with nonempty boundary, it is known that compact embedded hypersurface in \mathbb{R}^{n+1} with nonzero constant $H_{r}, r \geq 2$ and spherical boundary are spherical caps, that is, part of a round hypersphere [2]. It is also known recently in [3] that a compact embedded hypersurface with constant H_{r} in a convex piecewise smooth cone C which is perpendicular to ∂C is part of a spherical cap. In this paper, we generalize this in the following theorem:

Theorem 1.1. Let C be a domain in \mathbb{R}^{n+1} which is a convex cone with piecewise smooth boundary ∂C and with the vertex at the origin. Let $S \subset C$ be an embedded compact hypersurface with boundary in ∂C such that S is perpendicular to ∂C along ∂S. If there is a point on S where all the principal curvatures are positive and if the ratio H_{k} / H_{l} is

[^0]a nonzero constant for some $k, l=1,2, \cdots, n, k \neq l, S$ is a spherical cap.

2. Proof

Let C be a domain in \mathbb{R}^{n+1} which is a convex cone with piecewise smooth boundary ∂C and with the vertex at the origin. Let $S \subset C$ be an embedded compact hypersurface with boundary in ∂C such that S is perpendicular to ∂C along ∂S. Let η be the unit normal vector field of the embedding $X: S \rightarrow \mathbb{R}^{n+1}$.

The following Lemma is given in [3].
Lemma 2.1. The following holds for $k=1,2, \cdots, n$:

$$
\int_{S}\left(H_{k-1}-H_{k}\langle X, \eta\rangle\right)=0
$$

The following lemma is given in [4].
Lemma 2.2. Suppose $H_{k}>0$ for some $k \geq 2$. Then the followings hold:
(i) For any $j=1,2, \cdots, k, H_{j}>0$. Moreover, $H_{k}^{\frac{k-1}{k}} \leq H_{k-1}$.
(ii) $H_{k} / H_{k-1} \leq H_{k-1} / H_{k-2}$.
(iii) For every $l<k, H_{k} / H_{l} \leq H_{k-1} / H_{l-1}$.

Now, since S is compact, one can find a point in S where all the principal curvatures are positive. Without loss of generality, we may assume that $1 \leq l<k \leq n$. Then all H_{k} 's are positive at that point. Since H_{k} / H_{l} is constant on S and since H_{l} does not vanish on S by assumption, H_{k} and H_{l} are both positive on S. Then from Lemma 2.2 (iii), we have

$$
\begin{equation*}
0<\alpha:=H_{k} / H_{l} \leq H_{k-1} / H_{l-1} . \tag{2.1}
\end{equation*}
$$

Since $H_{k}=\alpha H_{l}$, we have by Lemma 2.1

$$
\begin{aligned}
0 & =\int_{S}\left(H_{k-1}-H_{k}\langle X, \eta\rangle\right) \\
& =\int_{S}\left(H_{k-1}-\alpha H_{l}\langle X, \eta\rangle\right)
\end{aligned}
$$

that is, we have

$$
\begin{equation*}
\int_{S} H_{k-1}=\int_{S} \alpha H_{l}\langle X, \eta\rangle . \tag{2.2}
\end{equation*}
$$

On the other hand, since α is constant, we also have by Lemma 2.1

$$
\int_{S} \alpha\left(H_{l-1}-H_{l}\langle X, \eta\rangle\right)=0
$$

that is, we have

$$
\begin{equation*}
\int_{S} \alpha H_{l-1}=\int_{S} \alpha H_{l}\langle X, \eta\rangle \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we have

$$
\int_{S}\left(H_{k-1}-\alpha H_{l-1}\right)=0
$$

Since we have from (2.1) and Lemma 2.2 (i), $H_{k-1}-\alpha H_{l-1} \geq 0$, it follows that

$$
H_{k-1} / H_{l-1}=\alpha=H_{k} / H_{l}
$$

everywhere on S. Now proceeding inductively, we have finally

$$
H_{k-l}=H_{k-l} / H_{0}=\alpha
$$

everywhere on S. Thus by the aforementioned result of [3], S is a spherical cap.

References

[1] A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. 58 (1962), 303-315.
[2] L. J. Alias and J. A. Malacarne, Constant scalar curvature hypersurfaces with spherical boundary in Euclidean space, Rev. Mat. Iberoamericana 18 (2002), 431-442.
[3] J. Choe and S. H. Park, Capillary surfaces in a convex cone, Math. Zeit. 267 (2011), 875-886.
[4] S. E. Koh, Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 42 (2000), 91-95.
[5] S. E. Koh and S. W. Lee, Addendum to the paper: Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 43 (2001), 275-276.
[6] N. J. Korevaar, Shere theorem via Alexandrov for constant Weingarten hypersurfaces: Appendix to a note of A. Ros, Jour. Diff. Geom. 27 (1988), 221-223.

[^0]: Received May 09, 2013; Accepted July 19, 2013.
 2010 Mathematics Subject Classification: Primary 53A35.
 Key words and phrases: spherical caps, mean curvature functions.

