• Title/Summary/Keyword: polynomial expansion

Search Result 87, Processing Time 0.029 seconds

SAMPLING EXPANSION OF BANDLIMITED FUNCTIONS OF POLYNOMIAL GROWTH ON THE REAL LINE

  • Shin, Chang Eon
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.379-385
    • /
    • 2014
  • For a bandlimited function with polynomial growth on the real line, we derive a nonuniform sampling expansion using a special bandlimited function which has polynomial decay on the real line. The series converges uniformly on any compact subsets of the real line.

A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form. (B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬)

  • 김덕수;류중현;이현찬;신하용;장태범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

THE QUANTUM sl(n, ℂ) REPRESENTATION THEORY AND ITS APPLICATIONS

  • Jeong, Myeong-Ju;Kim, Dong-Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.993-1015
    • /
    • 2012
  • In this paper, we study the quantum sl($n$) representation category using the web space. Specially, we extend sl($n$) web space for $n{\geq}4$ as generalized Temperley-Lieb algebras. As an application of our study, we find that the HOMFLY polynomial $P_n(q)$ specialized to a one variable polynomial can be computed by a linear expansion with respect to a presentation of the quantum representation category of sl($n$). Moreover, we correct the false conjecture [30] given by Chbili, which addresses the relation between some link polynomials of a periodic link and its factor link such as Alexander polynomial ($n=0$) and Jones polynomial ($n=2$) and prove the corrected conjecture not only for HOMFLY polynomial but also for the colored HOMFLY polynomial specialized to a one variable polynomial.

Improved Scalar Multiplication on Elliptic Curves Defined over $F_{2^{mn}}$

  • Lee, Dong-Hoon;Chee, Seong-Taek;Hwang, Sang-Cheol;Ryou, Jae-Cheol
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.241-251
    • /
    • 2004
  • We propose two improved scalar multiplication methods on elliptic curves over $F_{{q}^{n}}$ $q= 2^{m}$ using Frobenius expansion. The scalar multiplication of elliptic curves defined over subfield $F_q$ can be sped up by Frobenius expansion. Previous methods are restricted to the case of a small m. However, when m is small, it is hard to find curves having good cryptographic properties. Our methods are suitable for curves defined over medium-sized fields, that is, $10{\leq}m{\leq}20$. These methods are variants of the conventional multiple-base binary (MBB) method combined with the window method. One of our methods is for a polynomial basis representation with software implementation, and the other is for a normal basis representation with hardware implementation. Our software experiment shows that it is about 10% faster than the MBB method, which also uses Frobenius expansion, and about 20% faster than the Montgomery method, which is the fastest general method in polynomial basis implementation.

  • PDF

BETA-EXPANSIONS WITH PISOT BASES OVER Fq((x-1))

  • Hbaib, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.127-133
    • /
    • 2012
  • It is well known that if the ${\beta}$-expansion of any nonnegative integer is finite, then ${\beta}$ is a Pisot or Salem number. We prove here that $\mathbb{F}_q((x^{-1}))$, the ${\beta}$-expansion of the polynomial part of ${\beta}$ is finite if and only if ${\beta}$ is a Pisot series. Consequently we give an other proof of Scheiche theorem about finiteness property in $\mathbb{F}_q((x^{-1}))$. Finally we show that if the base ${\beta}$ is a Pisot series, then there is a bound of the length of the fractional part of ${\beta}$-expansion of any polynomial P in $\mathbb{F}_q[x]$.

CHARACTERIZATION OF ORTHONORMAL HIGH-ORDER BALANCED MULTIWAVELETS IN TERMS OF MOMENTS

  • Kwon, Soon-Geol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.183-198
    • /
    • 2009
  • In this paper, we derive a characterization of orthonormal balanced multiwavelets of order p in terms of the continuous moments of the multiscaling function $\phi$. As a result, the continuous moments satisfy the discrete polynomial preserving properties of order p (or degree p - 1) for orthonormal balanced multiwavelets. We derive polynomial reproduction formula of degree p - 1 in terms of continuous moments for orthonormal balanced multiwavelets of order p. Balancing of order p implies that the series of scaling functions with the discrete-time monomials as expansion coefficients is a polynomial of degree p - 1. We derive an algorithm for computing the polynomial of degree p - 1.