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Abstract. We show that the Links–Gould polynomial of a link has finite type coeffi-

cients in a multivariate series expansion, and express the leading coefficients in terms of

the linking numbers of a link.

1. Introduction

The Links–Gould polynomial [11] is a quantum invariant which is derived from
the one-parameter family of four dimensional representations of the quantum su-
peralgebra Uq[gl(2|1)]. D. De Wit, L. H. Kauffman and J. R. Links [4] gave an
explicit form of the R-matrix for the invariant, and showed that it is a powerful
invariant through its evaluation. The invariant is complete for all prime knots of up
to 10 crossings [3] and for the Kanenobu knots [8], [9]. The Links–Gould polyno-
mial is not only a powerful invariant. It is also a two-variable generalization of the
Alexander–Conway polynomial [7]. In this paper, we show that the Links–Gould
polynomial has finite type coefficients in a multivariate series expansion with respect
to symmetrical variables, where an invariant is finite type [2], [14] if it vanishes for
singular knots with finite singularities. Furthermore, we determine the leading co-
efficients in terms of the linking numbers of links. This result is analogous to that
on the first coefficient of the Conway polynomial of a link due to Hoste [5].

For an ordered oriented r-component link L = K1∪· · ·∪Kr, we denote by λi,j(L)
the linking number of Ki and Kj . Let Φ be a graph with r vertices p1, · · · , pr and
e(i, j) edges joining pi and pj . We define the invariant ΛΦ by

ΛΦ(L) =
∏
i<j

λi,j(L)
e(i,j).

Let Cr be the set of cycle graphs with r vertices p1, · · · , pr, where a cycle graph is a
connected graph which forms one cycle. Then

∑
Φ∈Cr

ΛΦ(L) is well-defined for an
unordered oriented r-component link L. For example,
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∑
Φ∈C2

ΛΦ(L) = λ1,2(L)λ2,1(L),∑
Φ∈C3

ΛΦ(L) = λ1,2(L)λ2,3(L)λ3,1(L),∑
Φ∈C4

ΛΦ(L) = λ1,2(L)λ2,3(L)λ3,4(L)λ4,1(L) + λ1,2(L)λ2,4(L)λ4,3(L)λ3,1(L)

+ λ1,3(L)λ3,2(L)λ2,4(L)λ4,1(L).

We denote by LG(L; t0, t1) the Links–Gould polynomial of an oriented link L.
Let a0(L) be the finite type invariant of type 0, defined by

a0(L) =

{
1 if L is a knot,

0 otherwise.

In [7], we showed that LG(L; t0, t1) ∈ Z[t±1
0 , t±1

1 ] and the equalities

LG(L; t0, 1) = LG(L; 1, t1) = a0(L).

Then the Links–Gould polynomial is expressed in the following form:

LG(L; t0, t1) = a0(L) +
∞∑

i,j=1

ai,j(L)(t0 − 1)i(t1 − 1)j

in Z[[t0 − 1, t1 − 1]], where ai,j(L) ∈ Z.

Theorem 1. The coefficient ai,j(L) is a finite type invariant of type i+ j. Let r be
the number of components of L. For i+ j < r, we have ai,j(L) = 0. Furthermore,
for i+ j = r, the leading coefficients ai,j(L) are given by

ai,j(L) =

{
−
∑

C∈C2
ΛC(L) if i = j = 1,

−2
(
r−2
i−1

)∑
C∈Cr

ΛC(L) otherwise.

2. Preliminaries

We recall the definition of the Links–Gould polynomial. Let V be a four di-
mensional vector space with a basis {ei}4i=1, and let V ∗ be its dual. We denote the
dual basis by {e∗i }4i=1:

e∗i (ej) = δij ,

where δij is the Kronecker symbol. We define R : V ⊗ V → V ⊗ V by

t0e
11
11 −

(
e2222 + e3333

)
+ t1e

44
44 + (t0 − 1)

(
e2121 + e3131

)
+ (t0 − 1)(1− t1)e

41
41

+ (t1 − 1)
(
e4242 + e4343

)
+ (t0t1 − 1)e2323 +

(
e1441 + e4114

)
− t

1/2
0 t

1/2
1

(
e2332 + e3223

)
+ t

1/2
0

(
e1221 + e2112 + e1331 + e3113

)
+ t

1/2
1

(
e2442 + e4224 + e3443 + e4334

)
− t

1/2
0 t

1/2
1 ((t0 − 1)(1− t1))

1/2 (
e2341 + e4123

)
+ ((t0 − 1)(1− t1))

1/2 (
e3241 + e4132

)
,
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Figure 1:

where the map ei1i2j1j2
: V ⊗ V → V ⊗ V is defined by

ei1i2j1j2
(ek1 ⊗ ek2) = δj1k1

δj2k2
ei1 ⊗ ei2 .

We define n : V ⊗ V ∗ → C and ñ : V ∗ ⊗ V → C by

n(ei ⊗ e∗j ) = δij and ñ(e∗i ⊗ ej) = µiδ
i
j ,

where (µ1, µ2, µ3, µ4) = (t0,−t−1
1 ,−t0, t

−1
1 ). We define u : C → V ⊗ V ∗ and ũ :

C → V ∗ ⊗ V by

u(1) =

4∑
i=1

µ−1
i ei ⊗ e∗i and ũ(1) =

4∑
i=1

e∗i ⊗ ei.

Any oriented tangle diagram can be expressed up to isotopy as a diagram com-
posed from the elementary tangle diagrams shown in Figure 1. Furthermore any
oriented tangle diagram can be expressed up to isotopy as a sliced diagram which is
such a diagram sliced by horizontal lines such that each domain between adjacent
horizontal lines has either a single crossing or a single critical point.

We associate the maps idV , idV ∗ , R, R−1, n, ñ, u, and ũ to elementary oriented
tangle diagrams as described in Figure 2. Corresponding to any oriented tangle
diagram D, we may then obtain a linear map [D] as the composition of tensor
products of copies of the linear maps associated to the elementary tangle diagrams
within D. For example,6

 = (idV ⊗ n)(R⊗ idV ∗)(idV ⊗ u).

Let T be a (1, 1)-tangle represented by a diagram DT . We denote by T̂ the

closure of T . The Links–Gould polynomial of the link T̂ is defined by the following
identity:

[DT ] = LG(T̂ ; t0, t1)idV .

For the details we refer the reader to [4], [13].

3. A family of singular links

A singular link is an immersion of disjoint circles into S3, which has transverse
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double points and no other singularities. Let v be an isotopy invariant for oriented
links, which takes values in an abelian group. We may extend v to a singular link
invariant via the Vassiliev skein relation:

v
(
I�r )

= v
(
I�

)
− v

(
I�

)
.

A singular link invariant v is called a finite type invariant of type d if v(L) = 0 for
any singular link L with more than d singular points.

For a finite type invariant vi of type di (i = 1, 2), the product v1v2 is a finite
type invariant of type d1 + d2. We remark that (v1v2)(L) is defined as follows: If L
has a singular point, we use the Vassiliev skein relation. Then we use the equality
(v1v2)(L) = v1(L)v2(L) for an oriented singular link L without singular points. For
a graph Φ with d edges, the invariant ΛΦ is a finite type invariant of type d.

A d-configuration is d pairs of 2d points on disjoint circles. A singular link
with d singular points respects a d-configuration if each singular point represents a
pair of the d-configuration. In Figure 3, we give an example of a d-configuration
and a singular link respecting it. For any d-configuration, there exists a singular
link respecting it. The configuration given in Figure 4 is called inadmissible. A
configuration is called admissible if it is not inadmissible. For the details we refer
the reader to [1], [2].

For a d-configuration α with r circles S1, · · · , Sr, we define a graph Φ(α) with
r vertices p1, · · · , pr and d edges by deforming the circle Sk into the vertex pk
and a chord joining Si to Sj into an edge joining pi to pj (see Figure 3). Let

αd,r
i ; 1 ≤ i ≤ fd,r be a list of the all distinct admissible d-configurations with r

circles S1, · · · , Sr. We set
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Ad,r := {αd,r
i | 1 ≤ i ≤ fd,r},

Ad,r
∞ := {α ∈ Ad,r |α is disconnected},

Ad,r
0 := {α ∈ Ad,r |α is a spanning tree},

Ad,r
l := {α ∈ Ad,r |α is a connected graph with one cycle of length l},

for l ≥ 2. We remark that Ad,r
0 = ∅ if d ̸= r − 1 and that Ad,r

l = ∅ if d ̸= r. For
example, we have

A0,2 = A0,2
∞ =

{ qq }
, A1,2 = A1,2

0 =

{ qq }
,

A2,2 = A2,2
∞ ∪ A2,2

2 =

{ qq , qq }
∪
{ qq }

,

A0,3 = A0,3
∞ , A1,3 = A1,3

∞ ,

A2,3 = A2,3
∞ ∪ A2,3

0 , A2,3
0 =

{ q qq
, q qq

, q qq }
,

A3,3 = A3,3
∞ ∪ A3,3

2 ∪ A3,3
3 ,

A3,3
2 =

{ q qq
, q qq

, q qq
, q qq

, q qq
, q qq }

, A3,3
3 =

{ q qq }
.

Let θ1 and θ2(n) be the singular links as shown in Figure 5. For α ∈ Ad,r
∞ , we

choose an ordered split singular link M(α) respecting α. For α ∈ Ad,r
0 , let M(α) be

the connected sum of d copies of θ1 such that M(α) respects α. For α ∈ Ad,r
l , let

M(α) be the connected sum of θ2(l) and d− l copies of θ1 such that M(α) respects
α.

We set

Md,r := {M(α) |α ∈ Ad,r}, Md,r
∞ := {M(α) |α ∈ Ad,r

∞ },

Md,r
0 := {M(α) |α ∈ Ad,r

0 }, Md,r
l := {M(α) |α ∈ Ad,r

l },

M̃d,r := M0,r ∪ · · · ∪Md,r, M̃d,r
∞ := M0,r

∞ ∪ · · · ∪Md,r
∞ .
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θ1: s6 6 θ2(n): p p ps s s6 6 6︸ ︷︷ ︸
n singular points

Figure 5:

Then

M̃d,r =


M̃d,r

∞ if d ≤ r − 2,

M̃r−1,r
∞ ∪Mr−1,r

0 if d = r − 1,

M̃r,r
∞ ∪Mr−1,r

0 ∪Mr,r
2 ∪ · · · ∪Mr,r

r if d = r.

Put Φ(M(α)) := Φ(α) for α ∈ Ad,r. We have the following lemma by direct
calculation.

Lemma 2. Let C be a cycle graph of length r ≥ 3. For M ∈ M̃r,r, we have

ΛC(M) =

{
1 if Φ(M) = C,

0 otherwise.

4. Proof of theorem 1

The Links–Gould polynomial satisfies the following skein relations [6]:

LG
(
9

: )
+ t0t1LG

(
�

�
)
= (s+ 1)LG

(
�

	

)
+ (s+ t0t1)LG

(
�

	

)
,

LG
(
9

: )
− LG

(
�

�
)
= (1− s)LG

(
�

	

)
+ (s− 1)LG

(
�

	

)
,

where s = −(t0 − 1)(t1 − 1). Put Ti = ti − 1 for i = 0, 1. By using these skein
relations, we obtain the following skein relation:

LG
(
9

:r 9

:r )
= (T0 + T1 − T0T1)LG

(
9

:r )
+ (T0T

2
1 + T 2

0 T1)LG
(
	
�

)
(1)

− (2T0T1 + T0T
2
1 + T 2

0 T1 + T 2
0 T

2
1 )LG

(
	
�

)
.

We denote by L1#L2 a connected sum of L1 and L2. Then we have

(2) LG(L1#L2) = LG(L1)LG(L2).
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Lemma 3. For n ≥ 2, we have

LG(θ1) = −T0T1,

LG(θ2(n)) = −2(T0 + T1)
n−2T0T1 +

∑
i+j>n

ai,j(θ2(n))T
i
0T

j
1 .

Proof. By the definition of the Links–Gould polynomial, we have

LG(θ1) = −T0T1,

LG(θ2(1)) = 0,

LG(θ2(2)) = −2T0T1 − T0T
2
1 − T 2

0 T1 − T 2
0 T

2
1 ,

LG(θ2(3)) = −2(T0 + T1)T0T1 +
∑

i+j>3

ai,j(θ2(3))T
i
0T

j
1 ,

LG(θ2(n)) = (T0 + T1 − T0T1)LG(θ2(n− 1)) + (T0T
2
1 + T 2

0 T1)LG(θ2(n− 2))

+ (2 + T0 + T1 + T0T1)(−1)n−1Tn−1
0 Tn−1

1 ,

for n ≥ 3, where the last equality follows from the skein relation (1) and the
equality (2).

We show the second equality in Lemma 3 by induction on n. Let m ≥ 4. we
suppose the equality for n < m. Then we have

LG(θ2(m)) = (T0 + T1 − T0T1)LG(θ2(m− 1)) + (T0T
2
1 + T 2

0 T1)LG(θ2(m− 2))

+ (2 + T0 + T1 + T0T1)(−1)m−1Tm−1
0 Tm−1

1

= −2(T0 + T1)
m−2T0T1 +

∑
i+j>m

ai,j(θ2(m))T i
0T

j
1 . �

An invariant for unordered links is that for ordered links by forgetting the order
of an ordered link.

Lemma 4. For M ∈ Md,r
∞ , we have

ai,j(M) = 0.

For M ∈ Mr−1,r
0 , we have

ai,j(M) =

{
(−1)r−1 if i+ j = 2r − 2,

0 otherwise.

For M ∈ Mr,r
l (l ≥ 2), we have

ai,j(M) =

{
−2

(
r−2
i−1

)
if i+ j = r = l,

0 if i+ j < 2r − l.



56 Atsushi Ishii

Proof. The Links–Gould polynomial vanishes for a split link, and so is the coefficient:
ai,j(M) = 0 for M ∈ Md,r

∞ .

For M ∈ Mr−1,r
0 , by Lemma 3 and the equality (2), we have LG(M) =

LG(θ1)
r−1 = (−1)r−1T r−1

0 T r−1
1 , which implies

ai,j(M) =

{
(−1)r−1 if i+ j = 2r − 2,

0 otherwise.

For M ∈ Mr,r
l (l ≥ 2), by Lemma 3 and the equality (2), we have

LG(M) = 2(−1)r−l+1(T0 + T1)
l−2T r−l+1

0 T r−l+1
1 +

∑
s+t>2r−l

as,t(M)T s
0T

t
1 ,

which implies

ai,j(M) =

{
−2

(
r−2
i−1

)
if i+ j = r = l,

0 if i+ j < 2r − l.

�
Proof of Theorem 1. By the definition of the R-matrix, we have

R−R−1|t0=1+α0h
t1=1+α1h

= hX,

for some 16 × 16 matrix X such that X|h=0 ∈ M16(C[α±1/2
0 , α

±1/2
1 ]). Then, for a

singular link L with more than d singular points (d ≥ 2), we have

LG(L; 1 + α0h, 1 + α1h) =
∑

i+j>d

ai,j(L)α
i
0α

j
1h

i+j ,

which implies that
∑

i+j=d ai,j(L)α
i
0α

j
1 is a finite type invariant of type d. This

argument is essentially the same with [2]. Hence ai,j(L) is a finite type invariant of
type i+ j.

For M ∈ M̃d,r and an r-component singular link L, there exists an integer
md,r(M ;L) such that

v(L) =
∑

M∈M̃d,r

md,r(M ;L)v(M),

for any finite type invariant v of type d (cf. [2], [10], [12]). We suppose i+ j ≤ r−2.
Putting v = ai,j , by Lemma 4, we have

ai,j(L) =
∑

M∈M̃i+j,r
∞

mi+j,r(M ;L)ai,j(M) = 0.
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We suppose i+ j = r − 1. Putting v = ai,j , by Lemma 4, we have

ai,j(L) =
∑

M∈M̃r−1,r
∞ ∪Mr−1,r

0

mi+j,r(M ;L)ai,j(M) = 0.

We suppose i+ j = r = 2. By [12], we have

m2,2(θ1;L) = λ12(L), m2,2(θ2(2);L) =
λ2
12(L)− λ12(L)

2
.

Putting v = a1,1, by Lemma 4, we have

a1,1(L) =
∑

M∈M̃2,2
∞ ∪M1,2

0 ∪M2,2
2

mi+j,r(M ;L)a1,1(M)

= m2,2(θ1;L)a1,1(θ1) +m2,2(θ2(2);L)a1,1(θ2(2))

= −λ2
12(L)

= −
∑
C∈C2

ΛC(L).

We suppose i + j = r ≥ 3. Let N ∈ Mr,r
r . Putting v = ΛΦ(N), by Lemma 2, we

have
ΛΦ(N)(L) =

∑
M∈M̃r,r

mr,r(M ;L)ΛΦ(N)(M) = mr,r(N ;L).

Putting v = ai,j , by Lemma 4, we have

ai,j(L) =
∑

M∈Mr−1,r
0

mr,r(M ;L)ai,j(M) +
r∑

l=2

∑
M∈Mr,r

l

mr,r(M ;L)ai,j(M)

=
∑

M∈Mr,r
r

−2

(
r − 2

i− 1

)
ΛΦ(M)(L)

= −2

(
r − 2

i− 1

) ∑
C∈Cr

ΛC(L). �
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