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We propose two improved scalar multiplication 
methods on elliptic curves over nqF  where mq 2=  using 
Frobenius expansion. The scalar multiplication of elliptic 
curves defined over subfield qF  can be sped up by 
Frobenius expansion. Previous methods are restricted to 
the case of a small m. However, when m is small, it is hard 
to find curves having good cryptographic properties. 

Our methods are suitable for curves defined over 
medium-sized fields, that is, 10 ≤ m ≤ 20. These methods 
are variants of the conventional multiple-base binary 
(MBB) method combined with the window method. One 
of our methods is for a polynomial basis representation 
with software implementation, and the other is for a 
normal basis representation with hardware 
implementation. Our software experiment shows that it is 
about 10% faster than the MBB method, which also uses 
Frobenius expansion, and about 20% faster than the 
Montgomery method, which is the fastest general method 
in polynomial basis implementation. 
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I. Introduction 

In elliptic curve cryptosystems, main operations such as key 
agreement and signing/verifying involve scalar multiplications 
using a large integer, k. The speed of scalar multiplication plays 
an important role in the efficiency of the whole system. In 
particular, fast multiplication is more crucial in some 
environments such as central servers, where large numbers of 
key agreements or signature generations occur, and in handheld 
devices with low computational power. 

There are several points that influence the speed of 
multiplication: the choice of base field, the choice of curve, the 
representation of a point, the representation of a scalar, and the 
multiplication algorithm. There are several scalar multiplication 
methods used on general elliptic curves: the binary method, 
signed binary method, sliding window method, and the 
Montgomery method. According to [1], the Montgomery 
method [2] is the fastest among such general methods. 

If an elliptic curve admits an efficient endomorphism, its use 
can speed up scalar multiplication. In 1991, Koblitz proposed 
anomalous binary curves and introduced the Frobenius 
expansion method to compute scalar multiplications [3]. In 
1997, Solinas improved Koblitz's ideas by combining them 
with a non-adjacent form representation of scalars [4]. Muller 
[5], Cheon and others [6] extended the Frobenius expansion 
method to elliptic curves defined over mn2F , where m is small. 
Elliptic curves defined over composite field nqF , where q = 2m, 
are attractive in that they admit a special endomorphism called 
the Frobenius map. 

If m is small, however, it is hard to find curves having good 
cryptographical properties since there are only 2(2m-1) such 
curves at most. Hence this small set of curves can be targets for 
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attack. Therefore, it is reasonable to consider composite fields 
where m is of medium size such as 10 ≤ m ≤ 20. Moreover, 
these composite fields can be used to develop efficient 
multiplication algorithms [7]-[9]. However previous methods 
become very inefficient as m grows larger, forcing us to use 
more general methods. Of course, there are security flaws in 
curves defined over composite fields such as Weil descent 
attacks, but we can control the genus of the Jacobian obtained 
by a Weil descent attack via the magic number m [10]. 

Conventionally, for a large m, we can modify the binary 
method for application to multiple base points, which are 
obtained by applying the Frobenius map. This method, called 
multiple-base binary (MBB), was used to speed up scalar 
multiplication on elliptic curves defined over an Optimal 
Extension Field of odd characteristic [11]. It is faster than the 
Montgomery method. 

In this paper, we propose two variants of the MBB method, 
combining it with the window method when the defining field 
is made up of composite degree mn and when m is of medium 
size. One of our proposals is suitable for the normal basis 
representation where we assume the squaring field elements 
are free, thus the same is true for a Frobenius map. The other 
proposal is apt for the ordinary polynomial basis representation. 
Our methods are 20% faster than the general Montgomery 
method and about 10% faster than the conventional MBB 
method in the polynomial basis implementation. 

This paper is organized as follows. In section II, we recall the 
preliminaries on the representation of field and elliptic curve 
elements. We also recall the basic Frobenius expansion method. 
In section III, we describe the proposed scalar multiplication 
methods together with previous methods. We consider some 
security issues about curves over subfields in section IV and 
conclude in section V. 

II. Preliminaries 

1. Representation of Finite Fields 

Let nqF  be a finite field of nq  elements where .2mq =  
The elements of nqF  can be represented in different ways 
including the polynomial basis and normal basis. In the 
polynomial basis, any element a of nqF  is represented as a 
polynomial of the form 
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where }1,0{∈ia  and θ  is a generator of the normal basis. 
In this basis, the cost of the squaring operation is almost free, as 
is that of the Frobenius map. But multiplication is not as fast as 
in the polynomial basis. 

Generally, polynomial basis representation is proper for 
software implementation and normal basis representation is 
proper for hardware implementation. We'll propose two scalar 
multiplication methods suitable for each basis. 

2. Representation of Points 

A non-supersingular elliptic curve )(F nqE  over qn is given 
by the Weierstrass equation in the form 

,:)(F 232 baxxxyyE nq ++=+  

together with the point at infinity denoted by O, where  

qba F, ∈ and 0≠b . We will write E to denote )(F nqE  
unless otherwise specified. 

The basic operations on an elliptic curve such as addition and 
doubling require field inversions. Since a field inversion is very 
expensive, it is more efficient to use a projective coordinate 
system to avoid inversions. Among the several projective 
coordinate systems available, we will use the Lopez-Dahab's 
system, which provides the fastest operations. Table 1 shows 
the number of field operations needed to execute basic 
operations on an elliptic curve: addition (ADD, ADD1, ADD2), 
doubling (DBL), and Frobenius map (φ). Both ADD1 and 
ADD2 are the sum of two points represented with a projective 
coordinate system, but in the case of ADD1, the z component 
of one of the points is restricted to 1, while ADD2 allows both 
points to have a general projective coordinate. See [12] for 
more details. 
 

Table 1. The number of field arithmetics for basic operations 
on an elliptic curve (a=0 or 1). 

Operation Inv. Mul. Sqr. 
ADD 1 2 1 
DBL 1 2 1 Affine 

φ 0 0 2m 
ADD1 0 9 4 
ADD2 0 13 6 
DBL 0 4 5 

Projective 

φ 0 0 3m 
Projective to affine 1 2 1 
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3. Frobenius Expansion 

The Frobenius map φ of E is defined by 

).,(),(,: qq yxyxEE a→φ  

Let t be the trace of the Frobenius map. The number of Fq-
rational points of E is then given by the equation 

,1)(# tqFE q −+=  

and the following equation holds in the endomorphism ring: 

.02 =+− qtφφ                 (1) 

Since there is a natural homomorphism from the ring Z[α] to 
the endomorphism ring End(E) which maps 2/)4( 2 qtt −+=α  

to φ, if an integer k is expressed as ,∑= i
ick α  then we can 

get a corresponding representation of 
i

ick ∑= φ  in the 
endomorphism ring. This implies that kP can be computed as 

).(PckP
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Lemma 1. Let ].Z[φ∈s  An integer, },2/,,2/{ qqy L−∈  
and an element, ],Z[φ∈x  exist such that 

.yxs += φ  

Proof . See [5].                                   � 

Lemma 2. Let 64≥q  and denote by N the norm function 
from  Z[φ] to Z given by N(a+bφ)=a2+ tab+qb2 for 

.Z, ∈ba  Given ],Z[φ∈s  set 
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Proof . We set s0 = s and define for 1≥j  the elements 
][Z φ∈js  by 

,11 −− += jjj css φ  

where }.2/,,2/{1 qqc j L−∈− By Lemma 1, such cj-1 always 
exist. If we define )(⋅=⋅ N , then we obtain by the triangle 
inequality 
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Hence, if  ,log2 0sj q≥  we have ).1( +≤ qs j  If 
we write sj = a+bφ  with ,, Zba ∈ then we have 
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Assuming that E is not supersingular, we obtain 
.34 2 ≥− tq  Since 1+≤ qs j  and ,64≥q we have 
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If ,2/qa ≤  then a+bφ is itself a valid expansion of 
length two. Otherwise, we can obtain a valid expansion of 
length three for ,2/qa >  which can be written as 

,)()( 2φφφ −++−=+ tbqaba  

and the case a <–q / 2 can be treated symmetrically. 
Now, assume that .qt ≤  If   1log2 0 −≥ sj q

in (2), 
then ,2 qs j ≤ and we have 
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Therefore, a +bφ is itself a valid expansion of length two.  � 

According to Lemma 2, the length of the Frobenius 
expansion of an integer k is about   .log2 kq  As in [4], we 
can reduce the expansion length by replacing the multiple kP 
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with k'P, where k'=k mod ),1( −nα since φn(P)=P. Moreover, 
assuming that nqEP (F∈ )＼ )(FqE , kP can be computed as 
k''P, where k'' ).1(mod 21 +++= −− Lnnk αα  

Actually, the norms of 1−nφ  and )1( 21 +++ −− Lnn φφ  
are )(F# nqE and ).(F/#)(F# qq EE n Therefore, by the 
reduction step, the expansion length is reduced by about half. 

)1( 21 +++ −− Lnn αα can be represented as αsr + using the 
following Lucas sequence: 
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Note that r and s can be pre-computed and stored. 

Lemma 3. For Z∈k , αzw +  and αyx + ]Z[α∈  
exist such that 
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where .22 qbtababa ++=+ α  

Proof . Let ].R[)/( ααα ∈′+′=+=′ zwsrkk  Then we 
can write 
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Let w, z be the integers nearest to w', z', respectively. Then 
we have 
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This completes the proof.                            � 

Algorithm 1 gives the procedure of the Frobenius expansion 
for an integer k. 
 

Algorithm 1. Frobenius expansion of k 

Input: Integer k and integers r and s such that
121 ++++=+ −− αααα Lnnsr  

Output: Frobenius expansion ∑ j
jc φ of k 

1:  skhktsrg −=+= ,)(  
2:  22 qstrsrN ++=  

)}(F/#)(F#is,that,ofnormtheis{ qnq EEsrN α+

3:  )/Round(),/Round( NhzNgw ==  
4:  ztsrswyqszrwkx )(, +−−=+−=  

)}(mod{ αα sryxk ++=  
5:  =C  
6:  while 00 ≠∨≠ yx  do 
7:      and)(modthatsuchMOD qxuqxu ≡=  

2/2/ quq ≤<−  
8:      quxv /)( −=  
9:      ytvx +=  

10:      vy −=  
11:       Prepend u to C 
12:  end while 
13:  Return 0121 ,,,,

11
ccccC ll L−−=  

 

Proposition 1. The expansion length l1 of integer k by 
Algorithm 1 satisfies 







+

≤+
≤

.otherwise3
,if1

1 n
qtn

l  

Proof. For ,64≥q we have 

.
4
3

)(F#4
)1(

3
4)(F#

2

<
+

<
qE

q
andqE

n

nq  

By Lemma 3, 

.

)(F#
)(F#

4
)1(

log

)(
4

)1(
log))((log

2

2

n

E
Eq

srN
q

yxN

q

nq
q

qq

≤





















 +
=






















+

+
≤












+ φφ

 

Therefore, the proof is completed by Lemma 2.           � 
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III. Scalar Multiplication Using Frobenius Expansions 

In this section, we assume that the previous Frobenius 
expansion created by Algorithm 1 will be used. Though 
Muller's original method does not utilize the reduction step 
which divides k by ,αsr + every scalar multiplication 
method using the Frobenius expansion can be sped up by the 
reduction. 

1. Previous Methods 

A. Muller’s Method 

Muller [5] proposed an algorithm that uses a reference table. 
The algorithm computes and stores jP for the range of 

2/1 qj ≤≤  found in the table, which is used to proceed with 
the following scalar multiplication: 
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As m becomes larger, the cost of table computation and the 
size of the table grow exponentially. Consequently, this method 
is applicable only to a small-sized m. 

B. Cheon and Others Method 

Cheon and others [6] improved on Muller's method by 
applying BGMW's idea [13]. This method computes and stores 

)(Pjφ for 10 1 −≤≤ lj  and proceeds with the following 
scalar multiplication: 
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This method is also applicable only when m is small because 
the loop (steps 3 thru 7 in Algorithm 2) needs at least q/2 
elliptic curve additions. 
 

Algorithm 2. Scalar multiplication (Cheon and others) 

Input: Frobenius expansion 
j

jc∑ φ of k and an element 

EP ∈  
Output: kP 

1:   Compute and store )(Pjφ for 10 1 −≤≤ lj  
2:   OQOT == ,  
3:   for 2/qi = to 1 by 1−  do 
4:       for each j such that )(set, PTTic j

j φ+==  
5:       for each j such that )(set, PTTic j

j φ−=−=

6:       TQQ +=  
7:   end for 
8:   Return Q 

C. Multiple-Base Binary Method (MBB) 

The binary method was originally applied to a single base 
point. However, it can be modified to support multiple base 
points and has been applied to the scalar multiplication of 
elliptic curves defined over an Optimal Extension Field of odd 
characteristic [11]. 

Let )(PP j
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j φ−=  Let 
20,2,1, ),,,( jmjmj ccc L−−  be the binary representation of jc  
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Algorithm 3. Scalar multiplication (MBB method) 
Input: Frobenius expansion j

jc∑ φ of k and an element 

EP ∈  
Output: kP 
1: Compute and store jP  for 10 1 −≤≤ lj  

)(PP j
j φ=  if ,0≥jc  

)(PP j
j φ−=  otherwise 

2:   OT =  
3:   for 1−= mi  to 0 by 1−  do 
4:                TT 2=  
5:      for each i such that jij PTTc +== set,1,  
6:   end for 
7:   Return T 

2. Proposed Methods 

We propose two variants of the MBB method by combining 
it with the window method. The first one is suitable for the 
normal basis representation. It reduces elliptic curve addition 
by increasing the number of Frobenius map operations, which 
are almost free in the normal basis representation. The second 
one is suitable for the ordinary polynomial basis representation. 

A. Proposed Method 1 

In this method, we will find a Frobenius expansion of an 
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integer with the coefficient jc  contained in the interval 
].1,0[ −q  If we expand the scalar in this way using Algorithm 

1, the process may not end in the case of .0>t  Therefore, we 
assume .0<t  In this way, we have the following upper 
bound on the expansion length. 
 

Lemma 4. Assume that 0<t  and .32≥q  Denote by N 
the norm function from ][φZ  to Z given by =+ )( φbaN  

22 qbtaba ++  for ., Zba ∈  Given ],[s φZ∈  set 
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Proof . Similar to the proof of Lemma 2, we set ss =0  and 
define for 0≥j  the elements [ ]φZs j ∈  by 
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If we define ,)( ⋅=⋅ N  then by the triangle inequality 
we obtain 
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If  0log2 sj q≥  in (3), then ≤js  ).2( +q  If we 
write φbas j +=  with ,, Zba ∈  then we have 
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Assuming that E is not supersingular, we obtain 
.34 2 ≥− tq  Since 2+≤ qs j  and ,32≥q  we have 
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Case 1 ).( qa ≥  We can write +−=+ )()( qaba φ  
.)( 2φφ −+ tb  If ,0)( <+ tb  

.)1())(()( 32 φφφφ +−−++−+−=+ ttbqqaba  

Otherwise, 

.)()1()()( 432 φφφφφ +−+−+++−=+ tqtbqaba  

Case 2 ).0( qa <≤  If ,0≥b  then φba +  is already 
the desired form; otherwise, we can write 

.)( 32 φφφφ +−−+=+ tbqaba  

Case 3 ).0( <≤− aq  We can write ++=+ )( qaba φ  
.)( 2φφ +− tb  If ,0>− tb  then the above formula is the 

desired form; otherwise, 

.)1())(()( 32 φφφφ +−+−+++=+ ttbqqaba  

Case 4 ).2( qaq −<<−  We can write +=+ aba (φ  
.2)2()2 2φφ +−+ tbq  If ,02 >− tb then the above formula 

is the desired form; otherwise, 

.)2())2(()( 32 φφφφ +−+−+++=+ ttbqqaba  

Therefore, φbas j +=  has a Frobenius expansion length of 
5 at most. 

Assume that .0<≤− tq  If   1log2 0 −≥ sj q
 in (3), 
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Hence, φbas j +=  has a Frobenius expansion length of 4 at 
most in a manner similar to the above cases. Therefore, the 
lemma is proved.                                   � 
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for .10 −≤≤ mj  Then, as shown in Fig. 1, kP can be 
computed as follows: 
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Fig. 1. A variant of the multiple-base binary method 
(proposed method 1). 
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Algorithm 4. Scalar multiplication (proposed method 1) 
Input: ∑= j

jck φ  for ),0( qc j <≤  P 

Output: kP 
1:   Compute and store PaPaS w

wa 0
1

1 )( ++= −
− Lφ

for all { }w
w aa 1,0),,( 01 ∈− L  

2:    OQ =  
3:  for 1−= mj  to 0 by 1−  do 
4:       OTQQ == ,2  
5:       for   1/2 −= wli  to 0 by 1−  do 
6:          )(TT wφ=  
7:          )( ,1 ,,, jwijwwi cca L−+=  
8:          aSTT +=  
9:       end for 

10:       TQQ +=  
11:    end for 
12:    Return Q 

B. Proposed Method 2 

In this method, we use the usual Frobenius expansion 
method (Algorithm 1). Let 20,1,2,1, ),,,,( jjmjmj cccc L−−  be a 
binary representation of .jc  Since ,2/qc j ≤  11, =−mjc  
holds if and only if .2/qc j =  

Let jjj cc /=ε  if ;0≠jc otherwise, .0=jε Let 

PaPaS w
wa 0

1
1 )(2 ++= −

− L  for ∈= − ),,( 01 aaa w L  { }w1,0  
and 

∑
−

=
−+

=
1

0
,,,1,

1

)(

l

j
wijwwij

j
ji ccST Lφε  

for   .1/0 −≤≤ wmi  As shown in Fig. 2, kP can then be 
computed as follows: 

 

∑
−

=

=
1/

0

.2
wm

i
i

wi TkP  

 

Fig. 2. A variant of the multiple-base binary method 
(proposed method 2). 

( cl-1,m-1,  cl-1,m-2,      .  .  .       cl-1,1,  cl-1,0  )  Pl-1 

( cl-2,m-1,  cl-2,m-2,      .  .  .       cl-2,1,  cl-2,0  )  Pl-2 

 

( c1, m-1,  c1,m-2,       .  .  .       c1,1,   c1,0   )   P1 

( c0, m-1,  c0,m-2,       .  .  .       c0,1,   c0,0   )   P0 

T   1/ −wm      .  .  .           T0 
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Algorithm 5. Scalar multiplication (proposed method 2) 

Input: ,∑= j
jck φ P 

Output: kP 
1:   Compute and store PaPaS w

wa 0
1

1 )(2 ++= −
− L

for all { }w
w aa 1,0),,( 01 ∈− L  

2:    OQ =  
3:    for   1/ −= wmi  to 0 by 1−  do 

4:       OTQQ w == ,2  
5:       for 11 −= lj  to 0 by 1−  do 
6:          )(TT φ=  
7:          ),,( ,1, wijwwij cca L−+=  
8:    If 0>jc then aSTT += else aSTT −=  
9:       end for 

10:       TQQ +=  
11:    end for 
12:    Return Q 

 
We note that the probability of 11, =−mjc  is 2/q. Therefore, 

the average number of iterations for the loop can be reduced to 
 ./)1( wm −  
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C. Comparison 

We used Lopez and Dahab's projective coordinate systems, 
shown in Table 1, assuming the bit length of k is .mmn −  In 
Tables 2 and 3, we compare the number of basic elliptic curve 
operations and field operations needed for each scalar 
multiplication method, assuming w=4. 

In proposal 1, we use an affine coordinate for computing Sa 
in step 8 of Algorithm 4 so that we can use ADD1 operations. 

We give three concrete examples. Their security levels are 
almost equivalent to the ordinary curves defined over 160-, 
192-, and 256-bit fields, respectively. We have selected 
example curves to create the minimal cofactors as follows: 

),95(,:)F(

)107(,:)F(

)47(,:)F(

3
32

17162

2
32

13172

1
32

17112

3

2

1

−=+=+

−=+=+

−=+=+

⋅

⋅

⋅

tbxxyyE

tbxxyyE

tbxxyyE

 

where 
 

=1b 0684488E 0146CB9F 1517781B 9F8D3381 
0C2AB22E  F99F897E 

=2b 16E6CBDE 394F95BC 234A53FF 0672DAFA 
A04BCF1E  3398FBAF 3F122289 

=3b 00009B68 7AC2E69E 134B9992 AAA3A99F 
675CC5A8 CF7BAA9B 7F2B7B98 AD243268 
E3B4D9B9, 

each with the polynomial basis such that 

).1/(][FF

),1/(][FF

),1/(][FF

239272
22

268221
22

567187
22

1716

1317

1711

++++=

++++=

++++=

⋅

⋅

⋅

xxxxx

xxxxx

xxxxx

 

We implemented each method on a Pentium IV/2.4 GHz 
computer running Windows 2000 and using MSVC 6.0 as a 
compiler. Table 5 shows the speed of the field operations and 
scalar multiplications described in the previous section. We 
used the left-to-right comb method with a window size of 4 
 

Table 2. The number of basic elliptic curve operations for each scalar multiplication method (A: affine, P: projective). 

Operation Cheon MBB Proposal 1 Proposal 2 

ADD (A) - - 12 1 −−w  12 1 −−w  

DBL (A) - - - 12 1 −−w  

φ (A) 11 −l  11 −l  12 1 −−w  - 

ADD1(P) 1l  2/1ml    )1/( 2 −wlm   wml /)1()1( 1 −−  

ADD2(P) 12 −m  - 1−m    1/)1( −− wm  

DBL (P) - 1−m  1−m    )1/)1(( −− wmw  

φ (P) - -   wwlm )1/( 2 −   wml /)1()1( 1 −−  

P A 1 1 1 1 
 

 

Table 3. The number of field operations for each scalar multiplication method. 

Operation Inv. Mul. Sqr. 

Montgomery 1 466 +− mnm  mnm 55 −  

Cheon 1 292139 1 +⋅+ −mn  13)2(2264 1 +++⋅+ − nmn m  

MBB 1 22/)359( −+nm  4)154( −+nm  

Proposal 1 8   1174/)1(9 −++ mnm    3254/)1()124( 2 −+++ mnmm  

Proposal 2 15   14/)1()479( +−+ mn    114/)1()34463( −−+++ mnmmn  

MBB )( qt ≤  1 22/)179( −+nm  4)34( −+nm  

Proposal 1 )( qt ≤  8   1174/)1(9 −+− mnm    3254/)1()124( 2 −+−+ mnmm  

Proposal 2 )( qt ≤  15   14/)1()299( +−+ mn    114/)1()2643( −−++ mnmn  
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Table 4. The number of field operations for scalar multiplication. 

m = 11, n = 17 m = 17, n = 13 m = 16, n = 17 
Operation 

Inv. Mul. Sqr. Inv. Mul. Sqr. Inv. Mul. Sqr. 

Montgomery 1 1,060 880 1 1,228 1,020 1 1,540 1,280 

Cheon 1 13,494 6,643 1 852,114 393,791 1 426,166 197,297 

MBB 1 1,032 909 1 1,290 1,135 1 1,502 1,324 

Proposal 1 8 681 7,752 8 900 14,566 8 991 16,077 

Proposal 2 15 601 2,176 15 657 3,393 15 801 4,045 

MBB )( qt ≤  1 933 777 1 1,137 931 1 1,358 1,132 

Proposal 1 )( qt ≤  8 582 6,256 8 747 11,030 8 847 12,941 

Proposal 2 )( qt ≤  15 547 1,954 15 585 2,953 15 729 3,629 
 

 

Table 5. Speed of field operations (in µs) and scalar multiplications (in ms) run on a Windows 2000 P-IV/2.4GHz computer. 

 Inv. Mul. Qdr. Sqr. Mont. MBB Prop.1 Prop.2 

E1 18.78 1.515 0.375 0.203 1.781 1.669 2.140 1.540 

E2 21.22 1.912 0.500 0.266 2.714 2.488 3.525 2.169 

E3 35.09 2.690 0.513 0.312 4.569 4.143 5.350 3.509 
 

 
and the extended Euclidean algorithm for field multiplication and 
inversion.1) We can see that Proposal 2 is about 10% faster than 
the conventional multiple-base binary method and about 20% 
faster than the Montgomery method with a polynomial basis. 

Proposal 1 contains a large number of squaring so it is not 
suitable for the polynomial basis. But if we assume that 
squaring is free (e.g., hardware-based normal basis 
representation), we can consider implementing it. 

We remark that quadrupling is more efficient than double 
squaring in some fields. In such cases we use quadrupling for 
computing φ. 

IV. Security Consideration 

The best attack known on general elliptic curve 
cryptosystems is the parallel collision search based on Pollard's 
ρ-method, where its complexity is the square root of the prime 
order of a base point. 

However, faster attacks exist for a special family of curves 
                                                               

1) Since our implementation is not optimal, our program’s speed may be slower in general 
than those found in other publications, e.g. [1]. However since the speed ratio of inversion 
versus multiplication is similar to those of other publications, comparing the algorithms of the 
scalar multiplication is still meaningful. 

such as subfield curves, supersingular curves, and anomalous 
curves. We can easily check whether the selected curves are 
supersingular or anomalous and can therefore avoid the attacks 
of [14]-[16]. According to [17] and [18], the attack time of the 
Pollard ρ-method can be reduced by a factor of n2  for 
subfield curves. However, this factor is too small to influence 
the security of the curves, because n is less than 500. In this 
case, the size of n2  is only 5 bits. 

A more serious attack which utilizes the Weil descent 
method was proposed by Frey [19]. Gaudry, Hess and Smart 
[20] showed how the Weil descent can be used to reduce the 
elliptic curve discrete logarithm problem in E to the discrete 
logarithm problem in the Jacobian subgroup of a hyperelliptic 
curve. According to [10], the genus of the Jacobian obtained by 
the GHS attack is 1)(2 −bm  or 12 1)( −−bm  where m(b) is the 
magic number of b when { }.1,0∈a  

The magic number of mb 2F∈  is at most m when we take 
q=2 in the GHS attack. If m is prime and 2 is primitive in ,Fm  
then m(b)=m. However E2 and E3 do not belong to this case. A 
direct computation shows that the minimum magic numbers 
(larger than 1) of b are 11, 17, and 15. The genus of the 
Jacobian for these values is too large to apply the GHS attack. 
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V. Conclusion 

We proposed scalar multiplication methods on elliptic curves 
defined over subfields. Such subfield curves have a special 
endomorphism called the Frobenius endomorphism, which can 
be utilized to speed up scalar multiplication. If the size of a 
subfield is too small, it is hard to find curves having good 
cryptographic properties such as a minimal cofactor. Therefore, 
it is reasonable to consider medium-sized subfields such as 

m2F  where .2010 ≤≤ m  Though subfield curves have some 
minor security flaws, they are still considerable due to their 
efficiency. 

Our method becomes more efficient in cases where the cost 
of squaring is very small. For example, if we can implement 
squaring with 1/8 or less of the cost for multiplication, our 
method is more efficient than the MBB method. Our 
implementation shows that it is about 20% faster than the 
Montgomery method and about 10% faster than the 
conventional multiple-base binary method in the polynomial 
basis. 
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