
ETRI Journal, Volume 26, Number 3, June 2004 Dong Hoon Lee et al. 241

We propose two improved scalar multiplication
methods on elliptic curves over nqF where mq 2= using
Frobenius expansion. The scalar multiplication of elliptic
curves defined over subfield qF can be sped up by
Frobenius expansion. Previous methods are restricted to
the case of a small m. However, when m is small, it is hard
to find curves having good cryptographic properties.

Our methods are suitable for curves defined over
medium-sized fields, that is, 10 ≤ m ≤ 20. These methods
are variants of the conventional multiple-base binary
(MBB) method combined with the window method. One
of our methods is for a polynomial basis representation
with software implementation, and the other is for a
normal basis representation with hardware
implementation. Our software experiment shows that it is
about 10% faster than the MBB method, which also uses
Frobenius expansion, and about 20% faster than the
Montgomery method, which is the fastest general method
in polynomial basis implementation.

Keywords: Elliptic curve, scalar multiplication,
Frobenius expansion, composite field.

Manuscript received June 20, 2003; revised Dec. 17, 2003.
Dong Hoon Lee (phone: +82 42 860 1436, email: dlee@etri.re.kr) and Seongtaek Chee

(email: chee@etri.re.kr) are with the National Security Research Institute, Daejeon, Korea.
Sang Cheol Hwang (email: schwang@cnu.ac.kr) and Jae-Cheol Ryou (email:

jcryou@cnu.ac.kr) are with the Chungnam National University, Daejeon, Korea.

I. Introduction

In elliptic curve cryptosystems, main operations such as key
agreement and signing/verifying involve scalar multiplications
using a large integer, k. The speed of scalar multiplication plays
an important role in the efficiency of the whole system. In
particular, fast multiplication is more crucial in some
environments such as central servers, where large numbers of
key agreements or signature generations occur, and in handheld
devices with low computational power.

There are several points that influence the speed of
multiplication: the choice of base field, the choice of curve, the
representation of a point, the representation of a scalar, and the
multiplication algorithm. There are several scalar multiplication
methods used on general elliptic curves: the binary method,
signed binary method, sliding window method, and the
Montgomery method. According to [1], the Montgomery
method [2] is the fastest among such general methods.

If an elliptic curve admits an efficient endomorphism, its use
can speed up scalar multiplication. In 1991, Koblitz proposed
anomalous binary curves and introduced the Frobenius
expansion method to compute scalar multiplications [3]. In
1997, Solinas improved Koblitz's ideas by combining them
with a non-adjacent form representation of scalars [4]. Muller
[5], Cheon and others [6] extended the Frobenius expansion
method to elliptic curves defined over mn2F , where m is small.
Elliptic curves defined over composite field nqF , where q = 2m,
are attractive in that they admit a special endomorphism called
the Frobenius map.

If m is small, however, it is hard to find curves having good
cryptographical properties since there are only 2(2m-1) such
curves at most. Hence this small set of curves can be targets for

Improved Scalar Multiplication on
Elliptic Curves Defined over F2mn

 Dong Hoon Lee, Seongtaek Chee, Sang Cheol Hwang, and Jae-Cheol Ryou

242 Dong Hoon Lee et al. ETRI Journal, Volume 26, Number 3, June 2004

attack. Therefore, it is reasonable to consider composite fields
where m is of medium size such as 10 ≤ m ≤ 20. Moreover,
these composite fields can be used to develop efficient
multiplication algorithms [7]-[9]. However previous methods
become very inefficient as m grows larger, forcing us to use
more general methods. Of course, there are security flaws in
curves defined over composite fields such as Weil descent
attacks, but we can control the genus of the Jacobian obtained
by a Weil descent attack via the magic number m [10].

Conventionally, for a large m, we can modify the binary
method for application to multiple base points, which are
obtained by applying the Frobenius map. This method, called
multiple-base binary (MBB), was used to speed up scalar
multiplication on elliptic curves defined over an Optimal
Extension Field of odd characteristic [11]. It is faster than the
Montgomery method.

In this paper, we propose two variants of the MBB method,
combining it with the window method when the defining field
is made up of composite degree mn and when m is of medium
size. One of our proposals is suitable for the normal basis
representation where we assume the squaring field elements
are free, thus the same is true for a Frobenius map. The other
proposal is apt for the ordinary polynomial basis representation.
Our methods are 20% faster than the general Montgomery
method and about 10% faster than the conventional MBB
method in the polynomial basis implementation.

This paper is organized as follows. In section II, we recall the
preliminaries on the representation of field and elliptic curve
elements. We also recall the basic Frobenius expansion method.
In section III, we describe the proposed scalar multiplication
methods together with previous methods. We consider some
security issues about curves over subfields in section IV and
conclude in section V.

II. Preliminaries

1. Representation of Finite Fields

Let nqF be a finite field of nq elements where .2mq =
The elements of nqF can be represented in different ways
including the polynomial basis and normal basis. In the
polynomial basis, any element a of nqF is represented as a
polynomial of the form

,01
2

2
1

1 axaxaxaa mn
mn

mn
mn ++++= −

−
−

− L

where }.1,0{1 ∈a
In the normal basis, nqa F∈ is represented as

,
1

2
1

2
2

2
2

10

−

−

−

− ++++=
mn

mn

mn

mn aaaaa θθθθ L

where }1,0{∈ia and θ is a generator of the normal basis.
In this basis, the cost of the squaring operation is almost free, as
is that of the Frobenius map. But multiplication is not as fast as
in the polynomial basis.

Generally, polynomial basis representation is proper for
software implementation and normal basis representation is
proper for hardware implementation. We'll propose two scalar
multiplication methods suitable for each basis.

2. Representation of Points

A non-supersingular elliptic curve)(F nqE over qn is given
by the Weierstrass equation in the form

,:)(F 232 baxxxyyE nq ++=+

together with the point at infinity denoted by O, where

qba F, ∈ and 0≠b . We will write E to denote)(F nqE
unless otherwise specified.

The basic operations on an elliptic curve such as addition and
doubling require field inversions. Since a field inversion is very
expensive, it is more efficient to use a projective coordinate
system to avoid inversions. Among the several projective
coordinate systems available, we will use the Lopez-Dahab's
system, which provides the fastest operations. Table 1 shows
the number of field operations needed to execute basic
operations on an elliptic curve: addition (ADD, ADD1, ADD2),
doubling (DBL), and Frobenius map (φ). Both ADD1 and
ADD2 are the sum of two points represented with a projective
coordinate system, but in the case of ADD1, the z component
of one of the points is restricted to 1, while ADD2 allows both
points to have a general projective coordinate. See [12] for
more details.

Table 1. The number of field arithmetics for basic operations
on an elliptic curve (a=0 or 1).

Operation Inv. Mul. Sqr.
ADD 1 2 1
DBL 1 2 1 Affine

φ 0 0 2m
ADD1 0 9 4
ADD2 0 13 6
DBL 0 4 5

Projective

φ 0 0 3m
Projective to affine 1 2 1

ETRI Journal, Volume 26, Number 3, June 2004 Dong Hoon Lee et al. 243

3. Frobenius Expansion

The Frobenius map φ of E is defined by

).,(),(,: qq yxyxEE a→φ

Let t be the trace of the Frobenius map. The number of Fq-
rational points of E is then given by the equation

,1)(# tqFE q −+=

and the following equation holds in the endomorphism ring:

.02 =+− qtφφ (1)

Since there is a natural homomorphism from the ring Z[α] to
the endomorphism ring End(E) which maps 2/)4(2 qtt −+=α

to φ, if an integer k is expressed as ,∑= i
ick α then we can

get a corresponding representation of
i

ick ∑= φ in the
endomorphism ring. This implies that kP can be computed as

).(PckP
i

i∑= φ

Lemma 1. Let].Z[φ∈s An integer, },2/,,2/{ qqy L−∈
and an element,],Z[φ∈x exist such that

.yxs += φ

Proof . See [5]. �

Lemma 2. Let 64≥q and denote by N the norm function
from Z[φ] to Z given by N(a+bφ)=a2+ tab+qb2 for

.Z, ∈ba Given],Z[φ∈s set

 
 





+

≤+
=

.otherwise3))((log

,if1))((log
1

sN

qtsN
l

q

q

Integers }2/,,2/{ qqc j L−∈ for 10 1 −≤≤ lj then exist
such that

.
1

0

1

j

l

j
jcs φ∑

−

=

=

Proof . We set s0 = s and define for 1≥j the elements
][Z φ∈js by

,11 −− += jjj css φ

where }.2/,,2/{1 qqc j L−∈− By Lemma 1, such cj-1 always
exist. If we define)(⋅=⋅ N , then we obtain by the triangle
inequality

)2(.

)1(2
)1(

2

2/

2/

0

2/

2/

0

1

2/
2/

0

111

q
q
s

q
qq

q
s

qq
q
s

q

qs

q

cs
s

j

j

j

j

i

i
j

jjj

j

+≤

−
−

+=+≤

+
≤

+
≤

−

=

−

−−−

∑

Hence, if  ,log2 0sj q≥ we have).1(+≤ qs j If
we write sj = a+bφ with ,, Zba ∈ then we have

.
4

4
4

4
4

2

)(

2
22

2
22

22

a
q

tq
q

tabq

btqtba

qbtabasN j








 −
+








+=








 −
+






 +=

++=

Assuming that E is not supersingular, we obtain
.34 2 ≥− tq Since 1+≤ qs j and ,64≥q we have

.
23

4
3

22

,
2

3)(
3

2

,
2

)1(
3

2

qqtbtb

qqqa

qqb

<+






 +≤+≤±

≤+≤

≤+≤

If ,2/qa ≤ then a+bφ is itself a valid expansion of
length two. Otherwise, we can obtain a valid expansion of
length three for ,2/qa > which can be written as

,)()(2φφφ −++−=+ tbqaba

and the case a <–q / 2 can be treated symmetrically.
Now, assume that .qt ≤ If   1log2 0 −≥ sj q

in (2),
then ,2 qs j ≤ and we have

.
2

)2(
3
2

,3)2(
3
2

qq
q

a

q
q

b

≤≤

<≤

Therefore, a +bφ is itself a valid expansion of length two. �

According to Lemma 2, the length of the Frobenius
expansion of an integer k is about   .log2 kq As in [4], we
can reduce the expansion length by replacing the multiple kP

244 Dong Hoon Lee et al. ETRI Journal, Volume 26, Number 3, June 2004

with k'P, where k'=k mod),1(−nα since φn(P)=P. Moreover,
assuming that nqEP (F∈)＼)(FqE , kP can be computed as
k''P, where k'').1(mod 21 +++= −− Lnnk αα

Actually, the norms of 1−nφ and)1(21 +++ −− Lnn φφ
are)(F# nqE and).(F/#)(F# qq EE n Therefore, by the
reduction step, the expansion length is reduced by about half.

)1(21 +++ −− Lnn αα can be represented as αsr + using the
following Lucas sequence:

.
,2for

,1,0

1

21

10

−

−−

−=

≥−=
==

ii
i

iii

qUU
iqUtUU

UU

αα

Note that r and s can be pre-computed and stored.

Lemma 3. For Z∈k , αzw + and αyx +]Z[α∈
exist such that

,
2

1

),()()(

αα

ααα

sr
q

yx

yxsrzwk

+








 +
≤+

++++=

where .22 qbtababa ++=+ α

Proof . Let].R[)/(ααα ∈′+′=+=′ zwsrkk Then we
can write

.))(()(αzstrwszsqwrk ′++′+′−′=

Therefore,

)./(
),/()(

22

22

qstrsrskz
qstrsrkstrw

++−=′
+++=′

Let w, z be the integers nearest to w', z', respectively. Then
we have

).]()()[())((αααα srzzwwsrzwk +−′+−′+++=

Let).)(()(ααα srzwkyx ++−=+ Then we have

,)(
,

ztsrswy
qszrwkx
+−−=

+−=

and

.)1(
2
1

)()(

α

ααα

srq

srzzwwyx

++≤

+−′+−′=+

This completes the proof. �

Algorithm 1 gives the procedure of the Frobenius expansion
for an integer k.

Algorithm 1. Frobenius expansion of k

Input: Integer k and integers r and s such that
121 ++++=+ −− αααα Lnnsr

Output: Frobenius expansion ∑ j
jc φ of k

1: skhktsrg −=+= ,)(
2: 22 qstrsrN ++=

)}(F/#)(F#is,that,ofnormtheis{ qnq EEsrN α+

3:)/Round(),/Round(NhzNgw ==
4: ztsrswyqszrwkx)(, +−−=+−=

)}(mod{ αα sryxk ++=
5: =C
6: while 00 ≠∨≠ yx do
7: and)(modthatsuchMOD qxuqxu ≡=

2/2/ quq ≤<−
8: quxv /)(−=
9: ytvx +=

10: vy −=
11: Prepend u to C
12: end while
13: Return 0121 ,,,,

11
ccccC ll L−−=

Proposition 1. The expansion length l1 of integer k by
Algorithm 1 satisfies







+

≤+
≤

.otherwise3
,if1

1 n
qtn

l

Proof. For ,64≥q we have

.
4
3

)(F#4
)1(

3
4)(F#

2

<
+

<
qE

q
andqE

n

nq

By Lemma 3,

.

)(F#
)(F#

4
)1(

log

)(
4

)1(
log))((log

2

2

n

E
Eq

srN
q

yxN

q

nq
q

qq

≤





















 +
=






















+

+
≤












+ φφ

Therefore, the proof is completed by Lemma 2. �

ETRI Journal, Volume 26, Number 3, June 2004 Dong Hoon Lee et al. 245

III. Scalar Multiplication Using Frobenius Expansions

In this section, we assume that the previous Frobenius
expansion created by Algorithm 1 will be used. Though
Muller's original method does not utilize the reduction step
which divides k by ,αsr + every scalar multiplication
method using the Frobenius expansion can be sped up by the
reduction.

1. Previous Methods

A. Muller’s Method

Muller [5] proposed an algorithm that uses a reference table.
The algorithm computes and stores jP for the range of

2/1 qj ≤≤ found in the table, which is used to proceed with
the following scalar multiplication:

.)))(((

)(

0121

1

0

11

1

PcPcPcPc

PckP

ll

l

j

j
j

+++=











=

−−

−

=
∑

LL φφφ

φ

As m becomes larger, the cost of table computation and the
size of the table grow exponentially. Consequently, this method
is applicable only to a small-sized m.

B. Cheon and Others Method

Cheon and others [6] improved on Muller's method by
applying BGMW's idea [13]. This method computes and stores

)(Pjφ for 10 1 −≤≤ lj and proceeds with the following
scalar multiplication:

∑

∑

=

−

=

=











=

2/

1

1

0

)(
1

q

d
d

l

j

j
j

dT

PckP φ

./),(where jjj
j

djc

jd ccPT == ∑
=

εφε

This method is also applicable only when m is small because
the loop (steps 3 thru 7 in Algorithm 2) needs at least q/2
elliptic curve additions.

Algorithm 2. Scalar multiplication (Cheon and others)

Input: Frobenius expansion
j

jc∑ φ of k and an element

EP ∈
Output: kP

1: Compute and store)(Pjφ for 10 1 −≤≤ lj
2: OQOT == ,
3: for 2/qi = to 1 by 1− do
4: for each j such that)(set, PTTic j

j φ+==
5: for each j such that)(set, PTTic j

j φ−=−=

6: TQQ +=
7: end for
8: Return Q

C. Multiple-Base Binary Method (MBB)

The binary method was originally applied to a single base
point. However, it can be modified to support multiple base
points and has been applied to the scalar multiplication of
elliptic curves defined over an Optimal Extension Field of odd
characteristic [11].

Let)(PP j
j φ= if ;0≥jc otherwise).(PP j

j φ−= Let
20,2,1,),,,(jmjmj ccc L−− be the binary representation of jc

and

∑
−

=

=
1

0

1

.,

l

j
jiji PcT

kP can then be computed using ∑ −

=
=

1

0
.2

m

i i
i TkP

Algorithm 3. Scalar multiplication (MBB method)
Input: Frobenius expansion j

jc∑ φ of k and an element

EP ∈
Output: kP
1: Compute and store jP for 10 1 −≤≤ lj

)(PP j
j φ= if ,0≥jc

)(PP j
j φ−= otherwise

2: OT =
3: for 1−= mi to 0 by 1− do
4: TT 2=
5: for each i such that jij PTTc +== set,1,
6: end for
7: Return T

2. Proposed Methods

We propose two variants of the MBB method by combining
it with the window method. The first one is suitable for the
normal basis representation. It reduces elliptic curve addition
by increasing the number of Frobenius map operations, which
are almost free in the normal basis representation. The second
one is suitable for the ordinary polynomial basis representation.

A. Proposed Method 1

In this method, we will find a Frobenius expansion of an

246 Dong Hoon Lee et al. ETRI Journal, Volume 26, Number 3, June 2004

integer with the coefficient jc contained in the interval
].1,0[−q If we expand the scalar in this way using Algorithm

1, the process may not end in the case of .0>t Therefore, we
assume .0<t In this way, we have the following upper
bound on the expansion length.

Lemma 4. Assume that 0<t and .32≥q Denote by N
the norm function from][φZ to Z given by =+)(φbaN

22 qbtaba ++ for ., Zba ∈ Given],[s φZ∈ set

 
 





+

<≤−+
=

.otherwise5))((log

,0if3))((log
2

sN

tqsN
l

q

q

An integer }{ ,10,1,,0 2 −≤≤−∈ ljqc j L then exists such
that

∑
−

=

=
1

0

2

.
l

j

j
jcs φ

Proof . Similar to the proof of Lemma 2, we set ss =0 and
define for 0≥j the elements []φZs j ∈ by

.11 −− += jjj css φ

If we define ,)(⋅=⋅ N then by the triangle inequality
we obtain

.1

)1(

)1(

2/

0

1

2/
2/

0

111

++≤

−+≤

−+
≤

+
≤

∑
=

−

−−−

q
q
s

qq
q
s

q

qs

q

cs
s

j

j

i

i
j

jjj

j

 (3)

If  0log2 sj q≥ in (3), then ≤js).2(+q If we
write φbas j += with ,, Zba ∈ then we have

.
4

4
4

4
4

2

)(

2
22

2
22

22

a
q

tq
q

tabq

btqtba

qbtabasN j








 −
+








+=








 −
+






 +=

++=

Assuming that E is not supersingular, we obtain
.34 2 ≥− tq Since 2+≤ qs j and ,32≥q we have

.
3

4
3

2422

,2)2(
3

2

,)2(
3

2

qqtbtb

qqqa

qqb

≤+






 +≤+≤±

<+≤

<+≤

Case 1).(qa ≥ We can write +−=+)()(qaba φ
.)(2φφ −+ tb If ,0)(<+ tb

.)1())(()(32 φφφφ +−−++−+−=+ ttbqqaba

Otherwise,

.)()1()()(432 φφφφφ +−+−+++−=+ tqtbqaba

Case 2).0(qa <≤ If ,0≥b then φba + is already
the desired form; otherwise, we can write

.)(32 φφφφ +−−+=+ tbqaba

Case 3).0(<≤− aq We can write ++=+)(qaba φ
.)(2φφ +− tb If ,0>− tb then the above formula is the

desired form; otherwise,

.)1())(()(32 φφφφ +−+−+++=+ ttbqqaba

Case 4).2(qaq −<<− We can write +=+ aba (φ
.2)2()2 2φφ +−+ tbq If ,02 >− tb then the above formula

is the desired form; otherwise,

.)2())2(()(32 φφφφ +−+−+++=+ ttbqqaba

Therefore, φbas j += has a Frobenius expansion length of
5 at most.

Assume that .0<≤− tq If   1log2 0 −≥ sj q
 in (3),

then ,12 +≤ qs j and we have

() .12
3

2

,312
3

2

qqa

q
b

<+≤

<









+≤

Hence, φbas j += has a Frobenius expansion length of 4 at
most in a manner similar to the above cases. Therefore, the
lemma is proved. �

Let PaPaS w
wa 0

1
1)(++= −

− Lφ for),,(01 aaa w L−=
{ }w1,0∈ and

ETRI Journal, Volume 26, Number 3, June 2004 Dong Hoon Lee et al. 247

 

∑
−

=
−+=

1/

0

2

)(,,,,1

wl

i
j jwijwwi cc

wiST Lφ

for .10 −≤≤ mj Then, as shown in Fig. 1, kP can be
computed as follows:

∑
−

=

=
1

0

.2
m

j
j

j TkP

Fig. 1. A variant of the multiple-base binary method
(proposed method 1).

(cl-1,m-1, cl-1,m-2, . . . cl-1,1, cl-1,0) Pl-1

(cl-2,m-1, cl-2,m-2, . . . cl-2,1, cl-2,0) Pl-2

(c1, m-1, c1,m-2, . . . c1,1, c1,0) P1

(c0, m-1, c0,m-2, . . . c0,1, c0,0) P0

Tm-1, Tm-2, . . . T1, T0

.

.

.

.

.

.

.

.

.

.

.

.

Algorithm 4. Scalar multiplication (proposed method 1)
Input: ∑= j

jck φ for),0(qc j <≤ P

Output: kP
1: Compute and store PaPaS w

wa 0
1

1)(++= −
− Lφ

for all { }w
w aa 1,0),,(01 ∈− L

2: OQ =
3: for 1−= mj to 0 by 1− do
4: OTQQ == ,2
5: for   1/2 −= wli to 0 by 1− do
6:)(TT wφ=
7:)(,1 ,,, jwijwwi cca L−+=
8: aSTT +=
9: end for

10: TQQ +=
11: end for
12: Return Q

B. Proposed Method 2

In this method, we use the usual Frobenius expansion
method (Algorithm 1). Let 20,1,2,1,),,,,(jjmjmj cccc L−− be a
binary representation of .jc Since ,2/qc j ≤ 11, =−mjc
holds if and only if .2/qc j =

Let jjj cc /=ε if ;0≠jc otherwise, .0=jε Let

PaPaS w
wa 0

1
1)(2 ++= −

− L for ∈= −),,(01 aaa w L { }w1,0
and

∑
−

=
−+

=
1

0
,,,1,

1

)(

l

j
wijwwij

j
ji ccST Lφε

for   .1/0 −≤≤ wmi As shown in Fig. 2, kP can then be
computed as follows:

 

∑
−

=

=
1/

0

.2
wm

i
i

wi TkP

Fig. 2. A variant of the multiple-base binary method
(proposed method 2).

(cl-1,m-1, cl-1,m-2, . . . cl-1,1, cl-1,0) Pl-1

(cl-2,m-1, cl-2,m-2, . . . cl-2,1, cl-2,0) Pl-2

(c1, m-1, c1,m-2, . . . c1,1, c1,0) P1

(c0, m-1, c0,m-2, . . . c0,1, c0,0) P0

T   1/ −wm . . . T0

.

.

.

.

.

.

.

.

.

.

.

.

Algorithm 5. Scalar multiplication (proposed method 2)

Input: ,∑= j
jck φ P

Output: kP
1: Compute and store PaPaS w

wa 0
1

1)(2 ++= −
− L

for all { }w
w aa 1,0),,(01 ∈− L

2: OQ =
3: for   1/ −= wmi to 0 by 1− do

4: OTQQ w == ,2
5: for 11 −= lj to 0 by 1− do
6:)(TT φ=
7:),,(,1, wijwwij cca L−+=
8: If 0>jc then aSTT += else aSTT −=
9: end for

10: TQQ +=
11: end for
12: Return Q

We note that the probability of 11, =−mjc is 2/q. Therefore,

the average number of iterations for the loop can be reduced to
 ./)1(wm −

248 Dong Hoon Lee et al. ETRI Journal, Volume 26, Number 3, June 2004

C. Comparison

We used Lopez and Dahab's projective coordinate systems,
shown in Table 1, assuming the bit length of k is .mmn − In
Tables 2 and 3, we compare the number of basic elliptic curve
operations and field operations needed for each scalar
multiplication method, assuming w=4.

In proposal 1, we use an affine coordinate for computing Sa
in step 8 of Algorithm 4 so that we can use ADD1 operations.

We give three concrete examples. Their security levels are
almost equivalent to the ordinary curves defined over 160-,
192-, and 256-bit fields, respectively. We have selected
example curves to create the minimal cofactors as follows:

),95(,:)F(

)107(,:)F(

)47(,:)F(

3
32

17162

2
32

13172

1
32

17112

3

2

1

−=+=+

−=+=+

−=+=+

⋅

⋅

⋅

tbxxyyE

tbxxyyE

tbxxyyE

where

=1b 0684488E 0146CB9F 1517781B 9F8D3381
0C2AB22E F99F897E

=2b 16E6CBDE 394F95BC 234A53FF 0672DAFA
A04BCF1E 3398FBAF 3F122289

=3b 00009B68 7AC2E69E 134B9992 AAA3A99F
675CC5A8 CF7BAA9B 7F2B7B98 AD243268
E3B4D9B9,

each with the polynomial basis such that

).1/(][FF

),1/(][FF

),1/(][FF

239272
22

268221
22

567187
22

1716

1317

1711

++++=

++++=

++++=

⋅

⋅

⋅

xxxxx

xxxxx

xxxxx

We implemented each method on a Pentium IV/2.4 GHz
computer running Windows 2000 and using MSVC 6.0 as a
compiler. Table 5 shows the speed of the field operations and
scalar multiplications described in the previous section. We
used the left-to-right comb method with a window size of 4

Table 2. The number of basic elliptic curve operations for each scalar multiplication method (A: affine, P: projective).

Operation Cheon MBB Proposal 1 Proposal 2

ADD (A) - - 12 1 −−w 12 1 −−w

DBL (A) - - - 12 1 −−w

φ (A) 11 −l 11 −l 12 1 −−w -

ADD1(P) 1l 2/1ml  )1/(2 −wlm  wml /)1()1(1 −−

ADD2(P) 12 −m - 1−m   1/)1(−− wm

DBL (P) - 1−m 1−m  )1/)1((−− wmw

φ (P) - -   wwlm)1/(2 −  wml /)1()1(1 −−

P A 1 1 1 1

Table 3. The number of field operations for each scalar multiplication method.

Operation Inv. Mul. Sqr.

Montgomery 1 466 +− mnm mnm 55 −

Cheon 1 292139 1 +⋅+ −mn 13)2(2264 1 +++⋅+ − nmn m

MBB 1 22/)359(−+nm 4)154(−+nm

Proposal 1 8   1174/)1(9 −++ mnm   3254/)1()124(2 −+++ mnmm

Proposal 2 15   14/)1()479(+−+ mn   114/)1()34463(−−+++ mnmmn

MBB)(qt ≤ 1 22/)179(−+nm 4)34(−+nm

Proposal 1)(qt ≤ 8   1174/)1(9 −+− mnm   3254/)1()124(2 −+−+ mnmm

Proposal 2)(qt ≤ 15   14/)1()299(+−+ mn   114/)1()2643(−−++ mnmn

ETRI Journal, Volume 26, Number 3, June 2004 Dong Hoon Lee et al. 249

Table 4. The number of field operations for scalar multiplication.

m = 11, n = 17 m = 17, n = 13 m = 16, n = 17
Operation

Inv. Mul. Sqr. Inv. Mul. Sqr. Inv. Mul. Sqr.

Montgomery 1 1,060 880 1 1,228 1,020 1 1,540 1,280

Cheon 1 13,494 6,643 1 852,114 393,791 1 426,166 197,297

MBB 1 1,032 909 1 1,290 1,135 1 1,502 1,324

Proposal 1 8 681 7,752 8 900 14,566 8 991 16,077

Proposal 2 15 601 2,176 15 657 3,393 15 801 4,045

MBB)(qt ≤ 1 933 777 1 1,137 931 1 1,358 1,132

Proposal 1)(qt ≤ 8 582 6,256 8 747 11,030 8 847 12,941

Proposal 2)(qt ≤ 15 547 1,954 15 585 2,953 15 729 3,629

Table 5. Speed of field operations (in µs) and scalar multiplications (in ms) run on a Windows 2000 P-IV/2.4GHz computer.

 Inv. Mul. Qdr. Sqr. Mont. MBB Prop.1 Prop.2

E1 18.78 1.515 0.375 0.203 1.781 1.669 2.140 1.540

E2 21.22 1.912 0.500 0.266 2.714 2.488 3.525 2.169

E3 35.09 2.690 0.513 0.312 4.569 4.143 5.350 3.509

and the extended Euclidean algorithm for field multiplication and
inversion.1) We can see that Proposal 2 is about 10% faster than
the conventional multiple-base binary method and about 20%
faster than the Montgomery method with a polynomial basis.

Proposal 1 contains a large number of squaring so it is not
suitable for the polynomial basis. But if we assume that
squaring is free (e.g., hardware-based normal basis
representation), we can consider implementing it.

We remark that quadrupling is more efficient than double
squaring in some fields. In such cases we use quadrupling for
computing φ.

IV. Security Consideration

The best attack known on general elliptic curve
cryptosystems is the parallel collision search based on Pollard's
ρ-method, where its complexity is the square root of the prime
order of a base point.

However, faster attacks exist for a special family of curves

1) Since our implementation is not optimal, our program’s speed may be slower in general
than those found in other publications, e.g. [1]. However since the speed ratio of inversion
versus multiplication is similar to those of other publications, comparing the algorithms of the
scalar multiplication is still meaningful.

such as subfield curves, supersingular curves, and anomalous
curves. We can easily check whether the selected curves are
supersingular or anomalous and can therefore avoid the attacks
of [14]-[16]. According to [17] and [18], the attack time of the
Pollard ρ-method can be reduced by a factor of n2 for
subfield curves. However, this factor is too small to influence
the security of the curves, because n is less than 500. In this
case, the size of n2 is only 5 bits.

A more serious attack which utilizes the Weil descent
method was proposed by Frey [19]. Gaudry, Hess and Smart
[20] showed how the Weil descent can be used to reduce the
elliptic curve discrete logarithm problem in E to the discrete
logarithm problem in the Jacobian subgroup of a hyperelliptic
curve. According to [10], the genus of the Jacobian obtained by
the GHS attack is 1)(2 −bm or 12 1)(−−bm where m(b) is the
magic number of b when { }.1,0∈a

The magic number of mb 2F∈ is at most m when we take
q=2 in the GHS attack. If m is prime and 2 is primitive in ,Fm
then m(b)=m. However E2 and E3 do not belong to this case. A
direct computation shows that the minimum magic numbers
(larger than 1) of b are 11, 17, and 15. The genus of the
Jacobian for these values is too large to apply the GHS attack.

250 Dong Hoon Lee et al. ETRI Journal, Volume 26, Number 3, June 2004

V. Conclusion

We proposed scalar multiplication methods on elliptic curves
defined over subfields. Such subfield curves have a special
endomorphism called the Frobenius endomorphism, which can
be utilized to speed up scalar multiplication. If the size of a
subfield is too small, it is hard to find curves having good
cryptographic properties such as a minimal cofactor. Therefore,
it is reasonable to consider medium-sized subfields such as

m2F where .2010 ≤≤ m Though subfield curves have some
minor security flaws, they are still considerable due to their
efficiency.

Our method becomes more efficient in cases where the cost
of squaring is very small. For example, if we can implement
squaring with 1/8 or less of the cost for multiplication, our
method is more efficient than the MBB method. Our
implementation shows that it is about 20% faster than the
Montgomery method and about 10% faster than the
conventional multiple-base binary method in the polynomial
basis.

References

[1] D. Hankerson, J.L. Hernandez, and A. Menezes, “Software
Implementation of Elliptic Curve Cryptography over Binary
Fields,” Cryptographic Hardware Embedded System (CHES
2000), LNCS 1965, Springer-Verlag, 2000, pp. 1-24.

[2] J. Lopez and R. Dahab, “Fast Multiplication on Elliptic Curves
over GF(2m) without Precomputation,” Cryptographic
Hardware Embedded System (CHES’99), LNCS 1717,
Springer-Verlag, 1999, pp. 316-327.

[3] N. Koblitz, “CM-Curves with Good Cryptographic Properties,”
Advances in Cryptology – Crypto’91, LNCS, Springer-Verlag,
1992, pp. 279-287.

[4] J. Solinas, “Improved Algorithms for Arithmetic on Anomalous
Binary Curves,” CACR Technical Report, 1999. This is a
updated version of the paper in the proceeding of CRYPTO'97.

[5] V. Muller, “Fast Multiplication on Elliptic Curves over Small
Fields of Characteristic Two,” J. of Cryptology, vol. 11, 1998, pp.
219-234.

[6] J. Cheon, S. Park, C. Park, and S. Hahn, “Scalar Multiplication
on Elliptic Curves by Frobenius Expansions,” ETRI J., vol. 21,
no. 1, 1999, pp. 27-38.

[7] C. Paar, P. Fleishmann, and P. Soria-Rodriguez, “Fast Arithmetic
for Public-Key Algorithms in Galois Fields with Composite
Exponents,” IEEE Trans. on Computers, vol. 48, no. 10, 1999,
pp. 1025-1034.

[8] S. Oh, C.H. Kim, J. Lim, and D.H. Cheon, “Efficient Normal
Basis Multiplier in Composite Fields” IEEE Trans. on
Computers, vol. 49, no. 10, 2000, pp. 1133-1138.

[9] J. Guajardo and C. Paar, “Efficient Algorithms for Elliptic Curve
Cryptosystems,” Advances in Cryptology – Crypto’97, LNCS
1294, Springer-Verlag, 1997, pp. 342-356.

[10] A. Menezes and M. Qu, “Analysis of the Weil Descent Attack of
Gaudry, Hess and Smart,” Topics in Cryptology – CT-RSA,
LNCS 2020, Springer-Verlag, 2001, pp. 308-318.

[11] T. Kobayashi, H. Morita, K. Kobayashi, and F. Hoshino, “Fast
Elliptic Curve Algorithm Combining Frobenius and Table
Reference to Adapt to Higher Characteristic,” Advances in
Cryptology – Eurocrypt’99, LNCS 1592, Springer-Verlag, 1999,
pp. 176-189.

[12] J. Lopez and R. Dahab, “Improved Algorithms for Elliptic Curve
Arithmetic in GF(2n),” Selected Areas on Cryptography
(SAC’98), LNCS 1556, Springer-Verlag, 1999, pp. 201-212.

[13] E. Brickell, D. Gordon, K. McCurley, and D. Wilson, “Fast
Exponentiation with Precomputation,” Advances in Cryptology –
Eurocrypt’92, LNCS 658, Springer-Verlag, 1993, pp. 200-207.

[14] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing Elliptic
Curve Logarithms to Logarithms in a Finite Field,” IEEE Trans.
on Information Theory, vol. 39, 1993, pp. 1639-1646.

[15] G. Frey and H. Ruck, “A Remark Concerning m-Divisibility
and the Discrete Logarithm in the Divisor Class Group of
Curves,” Math. Comp., vol. 62, 1994, pp. 865-874.

[16] N. Smart, “The Discrete Logarithm Problem on Elliptic Curves
of Trace One,” J. of Cryptology, vol. 12, no. 4, 1999, pp. 193-196.

[17] I. Duursma, P. Gaudry and F. Morain, “Speeding Up the Discrete
Log Computation on Curves with Automorphisms,” Advances in
Cryptology – Asiacrypt’99, LNCS 1716, Springer-Verlag, 1999,
pp. 103-121.

[18] M.J. Wiener and R.J. Zuccherato, “Faster Attacks on Elliptic
Curve Cryptosystems,” Selected Areas on Cryptography
(SAC’98), LNCS 1556, Springer-Verlag, 1999, pp. 190-200.

[19] G. Frey, “How to Disguise an Elliptic Curve (Weil Descent),”
Talk at ECC’98, Waterloo, 1998.

[20] P. Gaudry, F. Hess, and N. Smart, “Constructive and Destructive
Facets of Weil Descent on Elliptic Curves,” J. of Cryptology, vol.
15, no. 1, 2002, pp. 19-46.

Dong Hoon Lee received the BS degree in
mathematical education from Seoul National
University in 1994. He also received the MS
and PhD degrees in mathematics from Korea
Advanced Institute of Science and Technology
(KAIST) in 1996 and 2000. From 2000 to 2002,
he worked at Cryptography & Network

Security Center of Future Systems Inc. Since 2002 he has been with
National Security Research Institute (NSRI) as a Senior Research
Member. His interests include number theory, cryptography, and
cryptanalysis.

ETRI Journal, Volume 26, Number 3, June 2004 Dong Hoon Lee et al. 251

Seongtaek Chee received the PhD degree in
mathematics from Korea University, Seoul,
Korea in 1998. Since 1989 he has been on the
Research Staff at ETRI, where he is currently a
Principal Member of NSRI. His research
interests are in cryptographic functions.

Sang Cheol Hwang received the BS and the
MS degrees in electronics engineering from
Soongsil University in 1985 and 1988. He is
currently a PhD student at Chungnam National
University. His research interests include
internet security, electronic commerce, and
protocols.

Jae-Cheol Ryou received the BS degree in
industrial engineering from Hanyang University
in 1985, the MS degree in computer science
from Iowa State University in 1988, and the
PhD degree in electrical engineering and
computer science from Northwestern
University in 1990. He joined the faculty of the

Department of Computer Science at Chungnam National University,
Korea, in 1991. His research interests are internet security and
electronic payment systems. He is currently with the Internet Intrusion
Response Technology Research Center (IIRTRC), Chungnam
National University, Korea.

