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We propose two improved scalar multiplication
methods on elliptic curves over F, where ¢ =2" using
Frobenius expansion. The scalar multiplication of elliptic
curves defined over subfield F, can be sped up by
Frobenius expansion. Previous methods are restricted to
the case of a small m. However, when m is small, it is hard
to find curves having good cryptographic properties.

Our methods are suitable for curves defined over
medium-sized fields, that is, 10 < m < 20. These methods
are variants of the conventional multiple-base binary
(MBB) method combined with the window method. One
of our methods is for a polynomial basis representation
with software implementation, and the other is for a
normal  basis representation  with hardware
implementation. Our software experiment shows that it is
about 10% faster than the MBB method, which also uses
Frobenius expansion, and about 20% faster than the
Montgomery method, which is the fastest general method
in polynomial basis implementation.
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1. Introduction

In elliptic curve cryptosystems, main operations such as key
agreement and signing/verifying involve scalar multiplications
using a large integer, k. The speed of scalar multiplication plays
an important role in the efficiency of the whole system. In
particular, fast multiplication is more crucial in some
environments such as central servers, where large numbers of
key agreements or signature generations occur, and in handheld
devices with low computational power.

There are several points that influence the speed of
multiplication: the choice of base field, the choice of curve, the
representation of a point, the representation of a scalar, and the
multiplication algorithm. There are several scalar multiplication
methods used on general elliptic curves: the binary method,
signed binary method, sliding window method, and the
Montgomery method. According to [1], the Montgomery
method [2] is the fastest among such general methods.

If an elliptic curve admits an efficient endomorphism, its use
can speed up scalar multiplication. In 1991, Koblitz proposed
anomalous binary curves and introduced the Frobenius
expansion method to compute scalar multiplications [3]. In
1997, Solinas improved Koblitz's ideas by combining them
with a non-adjacent form representation of scalars [4]. Muller
[5], Cheon and others [6] extended the Frobenius expansion
method to elliptic curves defined over F ., , where m is small.
Elliptic curves defined over composite field Fqn , Where g =2",
are attractive in that they admit a special endomorphism called
the Frobenius map.

If m is small, however, it is hard to find curves having good
cryptographical properties since there are only 2(2"-1) such
curves at most. Hence this small set of curves can be targets for
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attack. Therefore, it is reasonable to consider composite fields
where m is of medium size such as 10 < m < 20. Moreover,
these composite fields can be used to develop efficient
multiplication algorithms [7]-[9]. However previous methods
become very inefficient as m grows larger, forcing us to use
more general methods. Of course, there are security flaws in
curves defined over composite fields such as Weil descent
attacks, but we can control the genus of the Jacobian obtained
by a Weil descent attack via the magic number m [10].

Conventionally, for a large m, we can modify the binary
method for application to multiple base points, which are
obtained by applying the Frobenius map. This method, called
multiple-base binary (MBB), was used to speed up scalar
multiplication on elliptic curves defined over an Optimal
Extension Field of odd characteristic [11]. It is faster than the
Montgomery method.

In this paper, we propose two variants of the MBB method,
combining it with the window method when the defining field
is made up of composite degree mn and when m is of medium
size. One of our proposals is suitable for the normal basis
representation where we assume the squaring field elements
are free, thus the same is true for a Frobenius map. The other

proposal is apt for the ordinary polynomial basis representation.

Our methods are 20% faster than the general Montgomery
method and about 10% faster than the conventional MBB
method in the polynomial basis implementation.

This paper is organized as follows. In section II, we recall the
preliminaries on the representation of field and elliptic curve

elements. We also recall the basic Frobenius expansion method.

In section III, we describe the proposed scalar multiplication
methods together with previous methods. We consider some
security issues about curves over subfields in section IV and
conclude in section V.

I1. Preliminaries

1. Representation of Finite Fields

Let F, be a finite field of ¢" elements where g =2".
The clements of F, can be represented in different ways
including the polynomial basis and normal basis. In the
polynomial basis, any element a of F, is represented as a
polynomial of the form

n—1 mn—2

_ m
a=da,, 1X +a,, »X +-t+ax+agy,

where a, €{0,1}.
In the normal basis, a € F, is represented as

n—2 mn-1
2

a=a0+a0*+-+a, ,0° +a,, ,
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where a, € {0,1} and & is a generator of the normal basis.
In this basis, the cost of the squaring operation is almost free, as
is that of the Frobenius map. But multiplication is not as fast as
in the polynomial basis.

Generally, polynomial basis representation is proper for
software implementation and normal basis representation is
proper for hardware implementation. We'll propose two scalar
multiplication methods suitable for each basis.

2. Representation of Points

A non-supersingular elliptic curve E(F,) over q" is given
by the Weierstrass equation in the form

E(Fq,,):y2 +xy=x"+ax’ +b,

together with the point at infinity denoted by O, where
a,beF and b#0. We will write £ to denote E F.)
unless otherwise specified.

The basic operations on an elliptic curve such as addition and
doubling require field inversions. Since a field inversion is very
expensive, it is more efficient to use a projective coordinate
system to avoid inversions. Among the several projective
coordinate systems available, we will use the Lopez-Dahab's
system, which provides the fastest operations. Table 1 shows
the number of field operations needed to execute basic
operations on an elliptic curve: addition (ADD, ADD1, ADD2),
doubling (DBL), and Frobenius map (¢). Both ADDI and
ADD? are the sum of two points represented with a projective
coordinate system, but in the case of ADDI, the z component
of one of the points is restricted to 1, while ADD2 allows both
points to have a general projective coordinate. See [12] for
more details.

Table 1. The number of field arithmetics for basic operations
on an elliptic curve (a=0 or 1).

Operation Inv. Mul.

ADD
DBL
4
ADDI
ADD2
DBL
4

Projective to affine

Affine

13

Projective

3m

— o | | (o |||

ETRI Journal, Volume 26, Number 3, June 2004



3. Frobenius Expansion

The Frobenius map ¢ of E is defined by

¢ E—>E, (x,y) (x%,y7).

Let ¢ be the trace of the Frobenius map. The number of F,-
rational points of £ is then given by the equation

#HE(F,)=q+1-t,
and the following equation holds in the endomorphism ring:

¢ —tp+q=0. M

Since there is a natural homomorphism from the ring Z[o(] to
the endomorphism ring End(E) whichmaps o = (¢ + /1> —44)/2

to ¢, if an integer & is expressed as k = Zcia’, then we can

get a corresponding representation of k = Zcﬂ}i in the

endomorphism ring. This implies that AP can be computed as
kP=Ycd'(P).
Lemmal.let s e Z[#]. Aninteger, y € {—q/2,---,q/2},
and an element, x € Z[@], exist such that
s=Xx¢+y.
Proof. See [5]. |

Lemma 2. Let ¢ > 64 and denote by N the norm function
from Z[#] to Z given by Natbg)=d’+tab+qb* for
a,beZ. Given seZ[¢], sct

_ ’_logq(N(S))-‘+ 1 if (< /g,
1 ’_Iqu (N (s))-‘+ 3 otherwise.

Integers ¢, €{-q/2,---,q/2} for 0<j<[ —1 then exist
such that

llfl
_ j
s = E c,g’.
=0

Proof. We set s, = s and define for j>1 the elements
s, € Z[¢] by

S, =80+,
wherec , €{-q/2,---,q/2}. By Lemma 1, such ¢;, always

exist. If we define || . || =,/N(-) , then we obtain by the triangle
inequality
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s +le. s |+qg/2
elsallenl Js kg
K Ja Ja
Isoll a~n o _lsoll a=g7")
: g7 2t T 2(Jg 1)
< ";32" +q. )

Hence, if j=> [2 logq" S, |H, we have ” s, " <(Wg+D. If
we write 5;= at+b¢ with a,b € Z, then we have

N(s;)=a’ +tab+qb’
2 2
= a+& + 4=t b’
2 4
ta) (4q-1’
=q p+ | 4|24 a’.
4q 4q

Assuming that £ is not supersingular, we obtain
4g—t* > 3. Since ”S/ ||S\/§+1 and g > 64, we have

[b]< 5 +n<d,
|a|s%(q+@s37q,

2 g2
|bit|g|b|+|t|g[z+ﬁjﬁ+ﬁ<2.

If |a|§q/2, then a+b¢ is itself a valid expansion of
length two. Otherwise, we can obtain a valid expansion of
length three for a > ¢ /2, which can be written as

a+bp=(a-q)+(b+Np-¢°,

and the case a <—¢q /2 can be treated symmetrically.

Now, assume that |t|£\/3. If jZ[Zlogq"sO"—‘—l in (2),
then " s, " < 2\/5 , and we have

|b|s%(2\/§)<3,
2 o<l
|a|£\/§(2q)£2.

Therefore, a +b¢ is itself a valid expansion of length two. [

According to Lemma 2, the length of the Frobenius
expansion of an integer k is about 2| log, k | As in [4], we
can reduce the expansion length by replacing the multiple kP
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with k'P, where k'=k mod (a" —1), since ¢'(P)=P. Moreover, Algorithm 1 gives the procedure of the Frobenius expansion
assuming that P e E(F,, )\E(E,) , kP can be computed as for an integer k.
k"P, where k"= k mod(a"" +a"” ++--+1).

Actually, the norms of ¢"—1 and (¢ +¢"> +--+1) Algorithm 1. Frobenius expansion of k

are #E(F,) and #E(F ,)#E(F,)). Therefore, by the Input: Integer k and integers » and s such that
reduction step, the expansion length is reduced by about half. resa=a"" +a" +-ta+1

(@™ +a" +---+1)can be represented as r+so using the  Qutput: Frobenius expansion Zc ¢’ ofk

following L :
ollowing Lucas sequence 11 g=(r+s)k, h=—sk

U, =0, U, =1, 2. N=r’+trs+qs’
U, =tU,,-qU,, foriz2, {N is the norm of r+sa, that is, #E(F ) # E(F,)}
a' =Ua-qU_,. 3: w=Round(g/N), z=Round(k/N)

x=k—-rw+gsz, y=—sw—(r+ts)z
Note that » and s can be pre-computed and stored.
{k=x+ya mod (r+sa)}

Lemma 3. For keZ, w+za and x+ya e€Z[a] 5- C=<>
exist such that while x#0vy =0 do
k=(w+za)(r+sa)+(x+ya), 7. u=x MOD g such that u =x(mod ¢g) and
1+\/; —q/2<u<gq/2
||x+ya||£( > J"r+sa", 8: v=(x—-u)/q
9: xX=tv+y
10: y=-v

where ||a+ba||=w/a2+tab+qb2. 11: Prepend uto C

Proof. Let k'=k/(r+sa)=w+z'aeR[a]. Then we 12: end while
can write 13: Return C:<c/|71,c,rz,~-,cl,c0>

k=W —sqz")+(sw' + (r + st)z")a.

Proposition 1. The expansion length /; of integer k& by

Therefore, Algorithm 1 satisfies

W =(r+s)k/(r* +trs +gs*), / <{n+1 iftsﬁ,
L <

2" =—sk/(r* +trs +qs*). n+3 otherwise.

Let w, z be the integers nearest to w', z, respectively. Then Proof. For q > 64, we have

we have
k=w+za)r+sa)+[(W -w)+(z' —2)a](r +sa). S E(F )<ﬂ and (1+q) 3
e 3 4#E(F,) 4
Let (x+ya)=k—(w+za)(r+sa). Then we have
By Lemma 3,
x=k—-rw+gsz,
e (+49)
y=—sw—(r+1s)z, log, (N(x+y¢)) |<|log, TN(V+S¢)
and
[x+yal=[v-w+E -al |r+sa| | log [ A0 #EE,)
1 ! 4 #E(F)
<—(1+ + .
S| r+sal o
This completes the proof. 0  Therefore, the proof is completed by Lemma 2. O
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III. Scalar Multiplication Using Frobenius Expansions

In this section, we assume that the previous Frobenius
expansion created by Algorithm 1 will be used. Though
Muller's original method does not utilize the reduction step
which divides & by r+sa, every scalar multiplication
method using the Frobenius expansion can be sped up by the
reduction.

1. Previous Methods

A. Muller s Method

Muller [5] proposed an algorithm that uses a reference table.
The algorithm computes and stores jP for the range of
1< j<¢/2 found in the table, which is used to proceed with
the following scalar multiplication:

kP = (lz cj¢/J(P)

j=0

:¢('"¢(¢(C/]71P)+61172P)'”+C|P)+COP'

As m becomes larger, the cost of table computation and the
size of the table grow exponentially. Consequently, this method
is applicable only to a small-sized .

B. Cheon and Others Method

Cheon and others [6] improved on Muller's method by
applying BGMW's idea [13]. This method computes and stores
¢’ (P) for 0< <[ —1 and proceeds with the following
scalar multiplication:

kP = (z ¢’ j(P)

J=0

where T, = Zng(P), g =c, /| c, |

Jeslee

This method is also applicable only when m is small because
the loop (steps 3 thru 7 in Algorithm 2) needs at least ¢/2
elliptic curve additions.

Algorithm 2. Scalar multiplication (Cheon and others)

Input: Frobenius expansion Z c j¢/ of k and an element

PeFE
Output: kP

ETRI Journal, Volume 26, Number 3, June 2004

1:  Compute and store ¢’ (P) for 0< j <] -1

2 T=0,0=0

3: for i=q/2tolby -1 do

4 foreachjsuch that ¢, =i, set T =T +¢’(P)
5 foreachjsuchthat ¢ =—i, set T =T —¢'(P)
6 0=0+T

7:  end for

8:  Return Q0

C. Multiple-Base Binary Method (MBB)

The binary method was originally applied to a single base
point. However, it can be modified to support multiple base
points and has been applied to the scalar multiplication of
elliptic curves defined over an Optimal Extension Field of odd
characteristic [11].

Let P =¢'(P) if ¢, >0; otherwise P =—¢’(P). Let
(€115C s 75C,), be the binary representation of |cj,|

and
-1

T,.=ZC..P

JsitJt
j=0

kP can then be computed using kP = zf;‘z T.

Algorithm 3. Scalar multiplication (MBB method)
Input: Frobenius expansion zc, ¢’ of k and an element

PeE
Output: kP
1: Compute and store P, for 0< j</ -1
P =¢'(P) if ¢, 20,
P =—¢’(P) otherwise
2. T=0
3: for i=m—1 toOby -1 do
4: T=2T
5
6
7

foreachisuchthat ¢, =1,set T=T+P,

i

end for
Retumn 7'

2. Proposed Methods

We propose two variants of the MBB method by combining
it with the window method. The first one is suitable for the
normal basis representation. It reduces elliptic curve addition
by increasing the number of Frobenius map operations, which
are almost free in the normal basis representation. The second
one is suitable for the ordinary polynomial basis representation.

A. Proposed Method 1

In this method, we will find a Frobenius expansion of an
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integer with the coefficient ¢, contained in the interval

[0,¢—1].
1, the process may not end in the case of ¢ > 0. Therefore, we

If we expand the scalar in this way using Algorithm

assume f<0. In this way, we have the following upper
bound on the expansion length.

Lemma 4. Assume that <0 and ¢ >32. Denote by N

the norm function from Z[@] to Z given by N(a+bg¢) =
a’ +tab+qb® for a,beZ. Given seZ[#], set

_ [log, (N(s) [+3  if —\fg <t <0,
T ’_logq(N(s))—‘-i-S otherwise.

An integer ¢, € {O,--~,q—1}, 0<j<Il -1, then exists such
that

b1

- j

s = E c. g’
=0

Proof. Similar to the proof of Lemma 2, we set s, =s and
define for j>0 theelements s, € Z [¢] by

S, = s/.¢ e,

If we define || . || =,/N(-), then by the triangle inequality
we obtain

| +(g-1)

Ja

S

o s kel
BEY P
g =

< "SIO ||+x/3+1.

/2
q.

©)

If j2[2log,|s, || in @), then [s,|< (Jg+2). If we
write s, =a+b¢ with a,beZ, thenwehave

S;

N(s,)=a’ +tab+qb’
2 2
:(aﬁj NEEA®
2 4
a) (4g-1
:q(b+—aj +( 4 jaz.
4q 4q

Assuming that E is not supersingular, we obtain
4g—1*>3. Since "s/. ||s\/5+2 and ¢ >32, wehave
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2
|b|3f(x/3+2)<q,

2
|a|Sf(q+2\/a)<2q,
|bi2t|g|b|+z|t|g(4+%}/;+%gq.

Case 1 (a=2gqg). We can write (a+bg)=(a—q)+
b+t)yp—¢>. If (b+1)<0,

a+bp=(a-q)+(g-(b+1)g+(-t-)p" +4’.
Otherwise,
a+bg=(a—q)+(b+0)g+(g-Dp’ +(-)p’ +¢".

Case 2 (0<a<gq). If b>0, then a+b¢ is already
the desired form; otherwise, we can write

a+bp=a+(g-byp—t4> +4'.

Case 3 (—g<a<0). We can write a+bd=(a+q)+
(b-t)p+¢*>. If b—t>0, then the above formula is the
desired form; otherwise,

a+tbp=(a+q)+(q+b-1)p+(1-1)¢* +¢ .

Case 4 (2g<a<-q). We can write a+bg=(a+
29)+(b-2t)¢p+2¢>. If b—2t>0,then the above formula
is the desired form; otherwise,

a+bp=(a+q)+(qg+(b-20)g+(2-1)p’ +¢°.

Therefore, s, =a+b¢ has a Frobenius expansion length of
5 at most.

Assume that —¢<7<0. If j 2‘210&," s, || ‘—1 in (3),
then " s, " < 2\/5 +1, and we have

2 1
|b|sf{2+ﬁ]<3,

|a|£%(2\/;+1)< q.

Hence, s, =a+b¢ has a Frobenius expansion length of 4 at
most in a manner similar to the above cases. Therefore, the

lemma is proved. O
Let S,=a,¢"'(P)++a,P for a=(a,, " a,)
€{0,1}" and
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[h/wl
_ wi
Tj - z ,¢ S(Cwi+w—l,jv“,Cwi,j)
i=0

for 0<j<m-1. Then, as shown in Fig. 1, kP can be
computed as follows:

kP = f“sz,.
=0

) Pr

) P

cio\|) P
), ml Coo ||)Po
Tty T To

Fig. 1. A variant of the multiple-base binary method
(proposed method 1).

Algorithm 4. Scalar multiplication (proposed method 1)
Input: & = ZCJ.W for (0<c;<q), P
Output: kP

1:  Compute and store S, =a_¢""' (P)+:+a,P
forall (a,,,-,a,)e{0,1}"

2: 0=0
3:  for j=m-1 toOby —1 do
4: 0=20,T=0
5: for i=[l,/w]-1 toOby -1 do
6: T=¢"(T)
7: a=(C, ;o Cois)
8: T=T+S,
9: end for
10: 0=0+T
11: end for
12: Return O

B. Proposed Method 2

In this method, we use the usual Frobenius expansion

method (Algorithm 1). Let (cwl,cl,mfz,--~,cj‘l,cj_0)2 be a

binary representation of |C/ | Since |cj | <q/2, ¢, =1
holds ifand only if |c, |=g/2.
Let ¢ ,=c,/|c, | if ¢, #0; otherwise, ¢ =0. Let
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S, =a, 2" (P)++a,P for a=(a,,, ,a)e {0,1}"
and

/=

— j
Ti - Zg/¢ S(cj,whwfl ""»Cj,wi)

j=0

for Ogjg(m/w—|—1, As shown in Fig. 2, kP can then be
computed as follows:
[m/wl-t

Z v 7—: )

i=0

kP =

((Crtmts  CLima,
((Cram1s  Croma,

Cuity Crio]) Pu
Cut, Ci20)) Pi2

@ o) (G _an)) [P

(am_omn) (=) A

T|'m/w'\—1 R To

Fig. 2. A variant of the multiple-base binary method
(proposed method 2).

Algorithm 5. Scalar multiplication (proposed method 2)
Input: k= Zc/.(/ﬁ”', P
Output: kP

I: Compute and store S, =a,2""'(P)+:+a,P

w-1

forall (a,,,-,a,)e{0,1}"

2 0=0

3: for i=[m/w|-1 toOby -1 do
4 0=2"0,T=0

5: for j=/-1 toOby -1 do
6 T=¢(T)

7 a=(C) s C )

8 Ife, >0thenT=T+S else T=T-5,
9: end for

10: 0=0+T

11: end for

12: Return O

We note that the probability of ¢, , =1 is 2/q. Therefore,
the average number of iterations for the loop can be reduced to

[(m=1)/w].

;m=1
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C. Comparison

We used Lopez and Dahab's projective coordinate systems,
shown in Table 1, assuming the bit length of kis mn—m. In
Tables 2 and 3, we compare the number of basic elliptic curve
operations and field operations needed for each scalar
multiplication method, assuming w=4.

In proposal 1, we use an affine coordinate for computing S,
in step 8 of Algorithm 4 so that we can use ADD/ operations.

We give three concrete examples. Their security levels are
almost equivalent to the ordinary curves defined over 160-,
192-, and 256-bit fields, respectively. We have selected
example curves to create the minimal cofactors as follows:

EI(F2|1.17):y2+xy:x3+bl, (t:_47)
E2(F217.13):y2 +xy=x3 +b2, (t=_107)
E3 (F215.17) . yz +xy = x3 +b3, (t = _95),

where

b, = 0684488E 0146CB9F
0C2AB22E F99F897E

b, = 16E6CBDE 394F95BC 234A53FF 0672DAFA
AO4BCFIE 3398FBAF 3F122289

b, = 00009B68 7AC2E69E 134B9992 AAA3A99F
675CC5A8 CF7BAA9B 7F2B7B98 AD243268
E3B4D9BY,

each with the polynomial basis such that

1517781B  9F8D3381

E.» =F[x] /(" +x"+x° +x°+1),

F,.o=F,[x] I+ x5+ x° +x7 +1),

Foo = EIXI/(x™" +x" +x° +x° +1).

We implemented each method on a Pentium 1V/2.4 GHz
computer running Windows 2000 and using MSVC 6.0 as a
compiler. Table 5 shows the speed of the field operations and
scalar multiplications described in the previous section. We
used the lefi-to-right comb method with a window size of 4

Table 2. The number of basic elliptic curve operations for each scalar multiplication method (A: affine, P: projective).

Operation Cheon MBB Proposal 1 Proposal 2
ADD (A) - - 2" -1 2" -1
DBL (A) ; ] ] o
$(A) -1 I -1 2" -1 -
ADDI(P) 11 mly /2 m(( /1 w]-1) Uy~ (m—1)/w]
ADD2(P) = ; m—1 [(m-1)/w]-1
DBL (P) ; m—1 m—1 w({ (m=1)/w]-1)
205 - - m iy 1 w]-nw (h=D[m-1/w]
PSA 1 1 1 1

Table 3. The number of field operations for each scalar multiplication method.

Operation Inv. Mul. Sqr.
Montgomery 1 6nm —6m + 4 Snm—5m
Cheon 1 9n+13-2"" +29 An+6-2" 4 2m(n+2)+13
MBB 1 mOn+35)/2-2 m@dn+15)—4
Proposal 1 8 9WI’_(n+1)/4-|+l7m—1 (4m+12m2)|7(n+1)/4—|+25m—3
Proposal 2 15 On+47)(m-1)/4]+1 Gimn -+ 6m+4n+34) (m—1)/4]-11
MBB (|t]<q) 1 mOn+17)/2 -2 m(4n+3)—4
Proposal 1 (|t|£\/g) 8 9m|_(n—1)/4-|+17m—1 (4m+12m2)|7(n—1)/4—|+25m—3
Proposal 2 (| ¢]<q) 15 On+29) (m—-1)/4]+1 Gmn+4n+26) (m—1)/4 |11
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Table 4. The number of field operations for scalar multiplication.

Operation m=11,n=17 m=17,n=13 m=16,n=17
Inv. Mul. Sqr. Inv. Mul. Sqr. Inv. Mul. Sqr.
Montgomery 1 1,060 880 1 1,228 1,020 1 1,540 1,280
Cheon 1 13,494 6,643 1 852,114 | 393,791 1 426,166 | 197,297
MBB 1 1,032 909 1 1,290 1,135 1 1,502 1,324
Proposal 1 8 681 7,752 8 900 14,566 8 991 16,077
Proposal 2 15 601 2,176 15 657 3,393 15 801 4,045
MBB (|7]<q) 1 933 777 1 1,137 931 1 1,358 1,132
Proposal 1 (|7]<+q) 8 582 6,256 8 747 11,030 8 847 12,941
Proposal 2 (|| <+[q) 15 547 1,954 15 585 2,953 15 729 3,629
Table 5. Speed of field operations (in £s) and scalar multiplications (in ms) run on a Windows 2000 P-IV/2.4GHz computer.
Inv. Mul. Qdr. Sqr. Mont. MBB Prop.1 Prop.2
Ey 18.78 1.515 0.375 0.203 1.781 1.669 2.140 1.540
E, 21.22 1.912 0.500 0.266 2.714 2.488 3.525 2.169
E3 35.09 2.690 0.513 0.312 4.569 4.143 5.350 3.509

and the extended Euclidean algorithm for field multiplication and
inversion.” We can see that Proposal 2 is about 10% faster than
the conventional multiple-base binary method and about 20%
faster than the Montgomery method with a polynomial basis.

Proposal 1 contains a large number of squaring so it is not
suitable for the polynomial basis. But if we assume that
squaring is free (e.g, hardware-based normal basis
representation), we can consider implementing it.

We remark that quadrupling is more efficient than double
squaring in some fields. In such cases we use quadrupling for
computing ¢.

I'V. Security Consideration

The best attack known on general elliptic curve
cryptosystems is the parallel collision search based on Pollard's
p-method, where its complexity is the square root of the prime
order of a base point.

However, faster attacks exist for a special family of curves

1) Since our implementation is not optimal, our program’s speed may be slower in general
than those found in other publications, e.g. [1]. However since the speed ratio of inversion
versus multiplication is similar to those of other publications, comparing the algorithms of the
scalar multiplication is still meaningful.
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such as subfield curves, supersingular curves, and anomalous
curves. We can easily check whether the selected curves are
supersingular or anomalous and can therefore avoid the attacks
of [14]-[16]. According to [17] and [18], the attack time of the
Pollard p-method can be reduced by a factor of V2n for
subfield curves. However, this factor is too small to influence
the security of the curves, because 7 is less than 500. In this
case, the size of m is only 5 bits.

A more serious attack which utilizes the Weil descent
method was proposed by Frey [19]. Gaudry, Hess and Smart
[20] showed how the Weil descent can be used to reduce the
elliptic curve discrete logarithm problem in £ to the discrete
logarithm problem in the Jacobian subgroup of a hyperelliptic
curve. According to [10], the genus of the Jacobian obtained by
the GHS attack is 2"”" or 2" —1 where m(b) is the
magic number of bwhen a € {0,1},

The magic number of b€ F,, is at most m when we take
¢=2 in the GHS attack. If m is prime and 2 is primitive in F,,
then m(b)=m. However E, and E; do not belong to this case. A
direct computation shows that the minimum magic numbers
(larger than 1) of b are 11, 17, and 15. The genus of the
Jacobian for these values is too large to apply the GHS attack.
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V. Conclusion

We proposed scalar multiplication methods on elliptic curves
defined over subfields. Such subfield curves have a special
endomorphism called the Frobenius endomorphism, which can
be utilized to speed up scalar multiplication. If the size of a
subfield is too small, it is hard to find curves having good
cryptographic properties such as a minimal cofactor. Therefore,
it is reasonable to consider medium-sized subfields such as
F,, where 10<m <20. Though subfield curves have some
minor security flaws, they are still considerable due to their
efficiency.

Our method becomes more efficient in cases where the cost
of squaring is very small. For example, if we can implement
squaring with 1/8 or less of the cost for multiplication, our
method is more efficient than the MBB method. Our
implementation shows that it is about 20% faster than the
Montgomery method and about 10% faster than the
conventional multiple-base binary method in the polynomial
basis.
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