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CHARACTERIZATION OF ORTHONORMAL HIGH-ORDER
BALANCED MULTIWAVELETS IN TERMS OF MOMENTS

S0ON-GEOL KwoN

ABSTRACT. In this paper, we derive a characterization of orthonormal
balanced multiwavelets of order p in terms of the continuous moments of
the multiscaling function ¢. As a result, the continuous moments sat-
isfy the discrete polynomial preserving properties of order p (or degree
p — 1) for orthonormal balanced multiwavelets. We derive polynomial
reproduction formula of degree p — 1 in terms of continuous moments for
orthonormal balanced multiwavelets of order p. Balancing of order p im-
plies that the series of scaling functions with the discrete-time monomials
as expansion coefficients is a polynomial of degree p — 1. We derive an
algorithm for computing the polynomial of degree p — 1.

1. Introduction and motivation

One of the difficulties in multiwavelets was that the prefiltering step was
necessary when implementing a multiwavelet transform. To avoid the prefilter-
ing step, balanced was considered. For balanced multiwavelets, the prefiltering
step is not necessary when implementing a multiwavelet transform. This is a
great advantage both in terms of computational cost and quality of results in
many applications.

Orthonormal balanced multiwavelets were introduced by Selesnick in [9] and
by Lebrun and Vetterli in [5] with a stronger condition. High-order balanced
multiwavelets were also introduced by Lebrun and Vetterli in [6, 7] and by
Selesnick in [10, 11]. Biorthogonal balanced multiwavelets via lifting were con-
structed by Bacchelli et al. in [1]. Characterizations of biorthogonal balanced
multiwavelets on R®, s > 1, were introduced by Chui and Jiang in [2].

Balanced is a condition for the construction of orthonormal multiscaling
function and multiwavelets to ensure the property of preservation/annihilation
of scalar-valued discrete polynomial data of some degree, when implementing
a multiwavelet transform. The definition of balanced or high-order balanced
multiwavelets in the form of integrals is related to the continuous moments. It
is well-known that the continuous moments of the multiscaling function ¢ and
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the multiwavelet function 1 can be computed if the recurrence coefficients of ¢
and 1) are given, for example, see [3]. This is a motivation for us to investigate a
characterization of the orthonormal balanced multiwavelets of order p in terms
of the continuous moments in this paper.

The main objective of this paper is to derive a characterization of the or-
thonormal balanced multiwavelets of order p in terms of the continuous mo-
ments of the multiscaling function ¢. As a result, the continuous moments
satisfy the discrete polynomial preserving properties of degree p — 1 for or-
thonormal balanced multiwavelets of order p. We derive polynomial reproduc-
tion formula of degree p—1 in terms of the continuous moments for orthonormal
balanced multiwavelets of order p. Balancing of order p implies that the series
of scaling functions with the discrete-time monomials as expansion coefficients
is a polynomial of degree p — 1. We derive an algorithm for computing the
above polynomial of degree p — 1.

This paper is organized as follows. Preliminaries and computation of the
continuous moments of the multiscaling function ¢ are introduced in Section 2.
The main result is stated in Section 3. Polynomial reproducing formula is
stated in Section 4. Preservation of discrete polynomials is stated in Section 5.
Finally, examples are given in Section 6.

2. Preliminaries

A multiscaling function of multiplicity r and dilation factor d is a vector of
r teal or complex-valued functions

b(@) = [$1(2), 62(2), ..., 6:(z)]", z€R,
which satisfies a recursion relation
(2.1) $(z) = Vd ) hy p(dz — k)
keZ

and generates a multiresolution approximation of L2(R). The corresponding
multiwavelet function 1 satisfies

Y(@) =Vd ) gr pldz — k).
kEZ

The recursion coefficients hy and g are r x r matrices.
Multiwavelets ¢ and v are orthonormal if

(@(z — 7). oz — k)) = Sj],
(®(z - 4),¥(z - k) = d;l,
(o(z - ), ¥(z - k) =0,

where I is the r x r identity matrix. Here the inner product is defined by

(,9) = / S’ (@) dz,
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where * denotes the complex conjugate transpose. This inner product is an
T X T matrix.

The multiscaling function approximation to a function f at resolution d—7
is given by the series

(2‘2) ij = Z(f, ¢jk>¢jka

kEZ
where
bji(z) = d7? $(dz — k).
A multiscaling function ¢ has approzimation order p if all polynomials up
to degree p — 1 can be represented exactly as a series

(2.3) o= () -k, i=0,...p—1

k€L

for some coefficient vectors yi

In [9, p. 2902] and [7, Theorem 10], the orthonormal balanced multiwavelets
of order p are defined with integrals. An orthonormal multiwavelet is balanced
of order p if
(2.4)

[eiaria= [ (o= 1) etotia == [ (=722 ) atori

forn =0,1,...,p — 1. A stronger condition than (2.4) was introduced in [5].

Throughout this paper we assume that the multiscaling function ¢ is or-
thonormal, has compact support, and is continuous (which implies approxima-
tion order at least 1), and satisfies condition E. Condition E means that the
matrix

1
My = ﬁzhk

keZ
has a unique eigenvalue of 1, and all other eigenvalues are less than 1 in ab-
solute value. Condition E is necessary for the stability of the multiresolution
approximation produced by ¢ [8].
We denote the vector of discrete-time monomials un, i, by

(2.5) Ui = [k”, <k+%>n,...,(k+r;1)nr.

2.1. Computation of multiwavelet moments

It is well-known that the continuous moments of the multiscaling function ¢
and the multiwavelet function 1 can be computed if the recurrence coefficients
of ¢ and 1 are given, for example, see [3].

In this section we present how to compute the integral mg (the zeroth con-
tinuous moment) and higher moments of the multiscaling function ¢. It is
similar for the computation of moments of the multiwavelet function .
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We begin by defining some terms. The symbol of the multiscaling function
o is
1 .
H(¢) = — hye k¢,

k€Z
The jth discrete moment of the multiscaling function ¢ is

1 )
M; = %Zkﬂhk.

keZ
The jth continuous moment of the multiscaling function ¢ is
oo
(2.6) m; =/ 7! ¢(z) dz.
—00

The symbol and the discrete moments are uniquely defined and easy to
calculate. They are related by

(2.7) M; = HU)(0),

where the superscript (j) denotes the jth derivative.
The continuous moments can be computed as follows. By substituting the
recursion formula (2.1) into the integral in (2.6), we find after simplification

J .
—4 J
(2.8) mj=d’ ZO (8) M;_sms,
. .
where 7Y = —2— stands for the combination.
s sl(j—s)!

For j =0, we get
mg = M()mo.
By condition E, my is uniquely determined up to a constant factor. The
normalizing condition for my is

(2.9) mymg = 1.
This follows from expanding the constant 1 in a multiscaling function series

(2.10) 1=3 (L,¢(z— k) dp(z—k) =mj>_ bz — k),

keZ kE€Z
and integrating:

1 1
1=/O ldxzmSZ/O ¢(x — k)dx

s=0

ke€Z
(2.11) —m / é(z) dz = m3mo.
—oo
For j > 1, (2.8) leads to
j=1 ..
(2.12) (@1 - Mo)m; = (ﬁ) M;_ym,.
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The matrix on the left is nonsingular, again by condition E. We can now com-
pute my, mg, ... successively (and uniquely) from (2.12).

Remark 2.1. From (2.10), we have a relationship between the continuous mo-
ments and the sum of the point values of the multiscaling function ¢ for any
orthonormal multiwavelets as

(2.13) mg > ¢(k) = 1.

k€EZ

3. Characterization of orthonormal balanced multiwavelets in
terms of moments

In this section, we derive a characterization of orthonormal balanced mul-

tiwavelets of order p in terms of the continuous moments of the multiscaling
function ¢.

The following lemma will be used in the proof of Theorem 3.2. One can
easily prove the following lemma or can find the proof in [4].

Lemma 3.1. The following combinatorial identity holds:
n—1
n\ (s n
_1 n—s = —
() () --()

Let (m,); be the jth component of the continuous moments m,, of the
multiscaling function ¢ and o, the first component of the m,; that is,

(mayi= [ " y(0)do

for£=0,1,....,n—1.

p 1= /oo z" 1 (z) dz = (mp)1.

—00
We are in a position to prove the main result of this paper. Necessity part
was proved in [4]. For the completeness of the paper we provide it here, again.

Theorem 3.2. An orthonormal multiwavelet is balanced of order p if and only
if the continuous moments m,, of the multiscaling functions ¢ satisfy

(3.1) m, = f: <:L) i Ui 0

=0
forn=0,1,...,p— 1, where u,  is the vector of the discrete-time monomial
defined in (2.5); that is,
(3.2) (mo)j+1 = ao,
n n ] n—1i
(3.3) (M) = ;0 (z> <;> o

forj=0,1,...,r—1landn=12...,p—1.
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Proof. Necessity: We prove by induction on n. For n = 0, by (2.4),

(mo)j11 = /_Z $j+1(x) dz = /:: ¢1(z) dz = ao.

Assume that (3.3) is true up to n — 1, that is,

(3.4) (mi)j1 = i (:) <%> o as

s=0
forj=0,1,...,r—1and k=1,2,...,n— 1. Note that, by (2.4) and binomial
expansion,

oy = /00 z"¢1(z) dx

-0

- [ e-lrom@a

i(—l)"-S(Z) (J)_ (ma)ser

s=0

= S(—l)n‘s (:) (%’)"—s (ms)jt1 + (Mn) 1.

8=0

So, by the assumption (3.4),

myes == S0 (1) () e

§=0

S () Q) RO

oS ()

s=0 £=0

By exchanging the order of the double summation and using Lemma 3.1, we

have
meis == 3 E(—l)"—s (7) (e)] (1)

n—1 .\ n—¢
et 2 (1) (7)o
=0

()
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Sufficiency: For n =0,1,...,p—1and j = 0,1,...,7 — 1, by the binomial
expansion,

/_o:o(x - —) dj+1(z i < > (%')"“s (mg)j+1

=0
—1

s:o(_l)”_s (Z) <%) o (mg)jr1 + (M)t

3 Cn

So, by the assumption,

| e-Ironw

—00

= (mn)ses +;(—1>”-S(Z> () Lio ()" ae]

(mn J+1+:2:;ZO (=1)"" ( )()(%) -ea@.

By exchanging the order of the double summation and using Lemma 3.1, we
have

| - §>"¢j+1<x> da

— o0

= /_0:0 "¢ (x) dz

Hence, it is balanced of order p by (2.4). U

Corollary 3.3. An orthonormal multiwavelet is balanced (of order 1) if and
only if the zeroth continuous moment my of the orthonormal multiscaling func-
tion ¢ is

(3.5) mo = —[1,1,...,1]7,
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which implies the first component ag of my is
1
(36) Qg = 7_1;
Proof. 1t is obvious from (2.9} and (3.2). 0

Remark 3.4. 1. An orthonormal multiwavelet is balanced of order p if and only
if the vector notation of the continuous moment m,, of ¢ is

1 ‘ 1]
1 1
- +( n )E_i 2 | 4.
. n-—-1 T .
1 'r-1)
0 ( 0
1 1
n (43} 211——1 E(_)_ gn
+(1)?‘7L—-1 : PN .
(r -1 \(r = 1)"

2. If o,...,ay, the first components of the jth, j = 0,...,n, continuous
moments of the balanced orthonormal multiscaling function ¢, are known,
then all the component of the nth continuous moment i, of the balanced
orthonormal multiscaling function ¢ can be computed as a sum of discrete-
time polynomials u; o of degree ¢ < n.

3. The main Theorem 3.2 can be used as a criterion for checking balancing
of order p with computed continuous moments my, ..., Mp_1. ‘

4. If an orthonormal multiwavelet is balanced, then the relationship be-
tween the continuous moments and the sum of point values of the multiscaling
function ¢ becomes

(3.7) who - #K) = (1,1, 11 $() = o= = V7.

keZ k€Z
4. Polynomial reproduction formula

Assume that the multiscaling function ¢ has approximation order p. One
can exactly decompose polynomials of degree n < p using ¢ and its translates,
that is, forn =0,1,...,p—1

2t =) (" bz~ k) (z — k).
kezZ

In this section, we show how to express polynomials 1,z,...,zP~! in terms
of 3 ez, 1 @(z — k), when the orthonormal multiwavelets are balanced of
order p. In "y 5 u @(x — k), the discrete-time monomials u;, , are used as
expansion coefficients with ¢(z — k).



ORTHONORMAL HIGH-ORDER BALANCED MULTIWAVELETS 191

For notational simplicity, we define

(4.1) M, (2) = > up, (e~

kEZ
Lemma 4.1. The following equality holds:

"
* n -1 *
(4.2) ul = Z (2) ul,.

=0

Proof. Using binomial expansion, we have

CELTCY
i( o

Theorem 4.2. An orthonormal multiwavelet is balanced of order p. Then for
n=0,1,...,p— 1,

(4.3) " = Z (7) a; I, ().
Proof. Forn=0,1,...,p—1,
"= pla - k) dla — k)

il

I

keZ
=Y (@ + k)" d(@)) ¢(z — k)
kEZ
k12 n ‘ A
= s »
et 2:: (;) kv e ,4)(3:»} Sz — k)
Y n n—3 * o
& _]z:% (3) K ma} oz — k).

=B B0 B e o

keZ | j=0 i=0

= ' ii (?) (i) oy k" “f,o} ¢z — k).
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By expanding the double summation and adding up diagonally, we have

B ol ey s Pt

Sab (G R
= ZZ()( ) k"‘f—*u@,o] $(z k)

ke€Z 3-0 pEi]
i n n n—j n— i : i
= Z()ajZ( ﬂ)k"“ﬂ"u;‘,o Sz — k).
kezZ _.’i=0 J =0

By Lemma 4.1,

Zh = [i (?) a; u;-—j,k:l Pz — k)

kez [ =0
= i ( ) o Iy j (z).

For future referenee, we list some in detail.

Z“o kdlz—k) = *\}-7-; Ho(z),

keZ

T = Z {—\% uj ; + o u(”;,k] Oz ~ k)

kEZ
1 1
= '\/“—,r': My (z) + a1 Ho(z) = W O3 (z) + o1 V7,
1, . .
332 -— kezz {W ’Uaz’k + 2a1 ulyk + a9 uo,k} ¢(a’,‘ — k)

1
= 77:112(.%) + 204 H}(.’ﬁ) + oy \/;

5. Preservation of discrete polynomials

Assume that the orthonormal multiwavelets are balanced of order p. In [9],
balancing of order p implies that the discrete-time monomials u, x(n < p) as
expansion coefficients with ¢(z — k) gives a polynomial of degree n, that is,

n(z) = Y up & — k) € Pu(R),

kEZ
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where P,,(R) is the set of polynomials of degree n on R. In this section, we derive
an algorithm for finding the polynomial IT,,(x) of degree n forn =0,1,...,p~1
in terms of the first components a,, of the continuous moments m,, of the
multiscaling function ¢.

Algorithm 5.1. Let an orthonormal multiscaling function ¢ be balanced of
order p. Then an algorithm for finding the polynomial

() =Yy ¢z — k)
kEZ

of degree n in terms of the first component «,, of the nth continuous moment
of p forn=0,1,...,p—1is:

e step 1: for n = 0, we compute

1
(5.1) Ho(z) = — = V/r.
Qo
e step 2: forn =1,2,...,p — 1, we recursively compute
1 n " /n
(5.2) I, (z) = ol i > i) T, ;(x)
j=1

Proof. From Theorem 4.2, it is obvious that for n = 0,

Mo(z) = 3w, pla— k) = — = V.

keZ &0
Forn=1,2,...,p—1,

" = i (”) a; Tl (z) = ap I (z) +

n

KQWEH@-

=0 N i
Hence,
1|, «(n
Mo@) = — [o" =3 (") &y ey (@)
Qg = \J
J_
forn=1,2,...,p~1. O

For future reference, we list some in detail.

Ho(l‘) = 070 = \/Fv
Oy (z) = alo [z — a1 o(z)] = Vrz—ra,
Hg(d)) = a/io [l‘z - 20[1 Hl(:c) — 2 Ho(.’ll)]

=r [2* — 204 (Vrz—ro1) — az V)
=vrz® —2ragz+ (2rVrad —ray).
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6. Examples

In this section, we give three examples to illustrate the general theory.

We base our examples on the orthonormal high-order balanced multiscaling
functions ¢ by Selesnick given in [9] and by Lebrun and Vetterli given in [6, 7]
with a stronger condition. These functions have multiplicity 7 = 2 and dilation
factor d = 2.

Example 6.1. In this example we take the multiscaling function ¢ supported
on [0,3] given in [9]. In [9], the constant A is given by A = £1 /-8 +63.
In this example, we consider only for A = —% v/ —8 + 6 /3, because the mul-

tuscaling function ¢ for this case is smoother than the other case. The nonzero
recursion coefficients are

T 1 A
0 —1———~\/?_>+—-
h0= 1 5 )
%Y it Vie
A 1 1 1 1
4z 4+ Z3-_=
m=1 :1)’ ° A 151)2 34 ?4 ’
B 6V B 6V E
( 0 0
ho=1| 7 1 1 3 A ]
6tV B V3@
( 0 0
hs =
\/_+€ E‘E\/_

Discrete moments M of the multiscaling function ¢ for n=0,1,2 are

1 1-4 24+ A
M0=_ 3
3\ 2+4 1-4
1 4-4A 1+3vV3+44A
12\ 13+3v/3+84 6-6A ’
M 1 4—4A 1+3v3+24
2= 25+9v3+204 8—144 '

Continuous moments m,, of the multiscaling function ¢ for n =0, 1,2 are

e L 1 1 3v2+ 6
TVE\1 ) ™ TR s5va1vE )
1 (20526x/§+11044\/§+578A\/§—98A\/(_5)

my = ———
7 55504 \ 48854 v/2 + 1670816 — 578 A2 + 98 AV
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Hence, the first components o, of the nth continuous moment m, of the
multiscaling function ¢ for n = 0,1,2 are ag = %, Q) = % (3 V2 + \/6) and

ar = =t (20526 v/2 + 110446 + 578 A v/2 — 98 A V).
One can easily check that equation (3.1), the main result of this paper, is
satisfied for n = 0,1, that is,

()5
* G) +g29 ((1)) B (alcjrl%‘l) B —; (2@1%) =mi,

1 ay (0 ap (0 o
0‘2<1>+2”2—<1>+§<12)_(a2+a1+%3>7ém2‘

Hence, it is balanced of order 2.
We have the polynomial reproduction formula as

122{%¢1(x—k)+%¢2(x—k)]7

kEZ

x:Zﬁ[(4k+3\/§+x/6)¢1(x—k)+(4k+3\/§+x/6+2) d)z(x—k)].

kEZ 8
We have the preservation of discrete polynomials as

o(z) = Y [¢1(x — k) + do(z — B)] = V2,

kEZ

1 3v2+ 6
) (z) = kdi(z—k)+ [k+=) ¢o(z — k)| = V22 - .
5 e+ (s43) e p) ;
Hence,
Z[qusl(z—k)+(2k+1)¢2(x—k)]=2\/§x—3-‘/-§2i@.

keZ
Example 6.2. In this example we take the multiscaling function ¢ supported
on [0,2] given in [6, 7]. This is called the Bat of order 1, which is a stronger

condition than the balanced of order 1, in [6, 7]. For the Bat of order 1, the
nonzero recursion coeflicients are

heoo L (0 2+vTy o, _ 1 (31 h_1<2—ﬁ0)
T2\ 2-vT)0 T AN\ 3) P 422+ VT 0)°
These differ from Lebrun and Vetterli by a factor of v/2, due to differences in
notation.

Discrete moments M,, of the multiscaling function ¢ for n = 0,1, 2 are

Moo L5V 34V o 1(7T-2vT 1), 1 11— 47 1)
0T8NS+ VT 5-v7) T8\ +2v7 3) 2 8\ 9+4VT 3)°
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Continuous moments m,, of the multiscaling function ¢ for n = 0,1, 2 are

o) mda () mesia ()

Hence, the first components «, of the nth continuous moment m, of the
multiscaling function ¢ for n = 0,1,2 are ag = —\}—5, a; = 7—6“/J§ and o =
—2815—\7/‘5/7 . One can easily check that equation (3.1), the main result of this

paper, is satisfied for n = 0 only, that is,
1y _ 1 (1y__
(2 )] 1 _‘\/§ 1 _m07
1 ap (0 _ o 1 (717 1
1)+ 3 0) - (%) ~ma (o) s (62 v) =

Hence, the Bat of order 1 is balanced of order 1.
We have the polynomial reproduction formula as

1 1
1= — —-k)Y+— ~k)|.
We have the preservation of discrete polynomials as
Ho(z) =) [$1(z — k) + do(x — k)] = V2.
kEZ

Example 6.3. In this example we take the multiscaling function ¢ supported
on [0, 3] given in [6, 7]. This is called the Bat of order 2, which is a stronger
condition than the balanced of order 2, in [6, 7]. For the Bat of order 2, the
nonzero recursion coefficients are

_ 0 b _ a; b _ az b
m=va(y ®). m=vE(3 2), m=va(p 2),
_ az b _ as 0
h3—\/§(b1 al), h4—\/§<b0 O),

where
a 93—13+/31 by = =3L+V3I
1= 640 0= 640
@ — 341—11V/3T by = 217+23v31
2= 640 1= 640
an = L1=11V3I by — 23+7V31
3= 640 2= T610
—134331 _ —1+4/31
1= e by = =5

These differ from Lebrun and Vetterli by a factor of v/2, due to differences in
notation.
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Discrete moments M,, of the multiscaling function ¢ for n = 0,1, 2 are

M= L (27-2V31 13+2V31
= 40 \13+2v31 27-2v31)’
_ 1 (189-14v/31 65+ 10v31

7160 \143 4+ 22v/31 243 —18v31)’

_ 1 (337-27V/31 75+15v31
160 \387 + 6331 553 —43V31)

Continuous moments m., of the multiscaling function ¢ for n =0, 1,2, 3 are

() e () e s ()
0 \/5 1/ 1-4\/5 9/’ 2 16\/5 81/’
1 <1590697 + 1548+/31

1

2

3 = 09339173 \3401607 — 1548+/31) -

Hence, the first components «, of the nth continuous moment m, of the

multiscaling function ¢ for n = 0,1,2,3 are ag = %, ap = ﬁﬁ’ ay = %
and ag = l%%gﬂ. One can easily check that equation (3.1), the main

result of this paper, is satisfied for n = 0,1, 2, that is,

o ) ) -m
o ()2 0) = 0) o

Hence, the Bat of order 2 is balanced of order 2.
We have the polynomial reproduction formula as

1:Z[i¢1(x—k)+i¢2(x—k)],

= V2 V2
_ k47 4k+9
x_kezz[—‘l\/? 1 ( k)+——4\/§ o k)}.

We have the preservation of discrete polynomials as

o(z) = > [¢1(z — k) + pa(z — k)] = V2,

kEZ

mi(z) =) [k¢1(m—k)+ <k+%) ¢2(x_k)] —

kEZ

V2
\/ix—T.

Hence,

> 2kéi(z—k)+ 2k +1) do(a — k)] =2V2z — 2

2
keZ
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