• Title/Summary/Keyword: polymer solution

Search Result 1,843, Processing Time 0.033 seconds

Separation of $SF_6$ from $SF_6/N_2$ Mixtures Using Polymeric Membranes (고분자 분리막을 이용하여 $SF_6/N_2$ 혼합 기체에서 $SF_6$ 분리)

  • Ko, Young-deok;Lee, Hyung-Keun;Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.72-76
    • /
    • 2012
  • $SF_6$ has an extremely high global worming potential (GWP). Therefore, there has been an effort to reduce the use of $SF_6$ and its emission into atmosphere. One possible solution for minimizing the use of $SF_6$ in electrical equipments is utilization of gas mixtures such as $SF_6/N_2$. The $SF_6$ concentration in the gas mixture varies from 10 to 60%. However, when the apparatus is repaired or dismantled, we have to recover $SF_6$ from the gas mixture. Since the boiling point of $SF_6$is low (${\sim}-60^{\circ}C$), the liquefaction method is difficult to apply. One possible alternative is the membrane separation technology. In this study, we investigated the $SF_6$ and $N_2$ permeation properties of 5 polymeric membranes. For example, permeability of $N_2$ in BOPP membrane at $25^{\circ}C$was 0.19 barrer, whereas that of $SF_6$ was only 0.0012 barrer, resulting in the selectivity of 158. An upper bound for $SF_6/N_2$ gas pair was suggested for the first time with n = -1.33 and k = 160 (barrer).

A comparison of chlorhexidine release rate from three polymeric controlled release drug prototypes (제어방출형 소독제의 약물전달 체로 사용된 폴리머 유형에 따른 클로르헥시딘 제어 방출속도 비교)

  • Bok Young-Bin;Lee Doug-Youn;Lee Chang-Young;Kim Kyung-Nam;Kum Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.548-552
    • /
    • 2004
  • Intracanal disinfection of infected root canal is one of important treatment procedure. This in vitro study aimed to evaluate whether the surface polymers of controlled release drug (CRD) can effectively control the release rate of chlorhexidine for root canal disinfection. Four CRD prototypes were prepared: Group A (n=12); The core device (absorbent paper point) was loaded with 40% CHX solution as control. Group B (n=12); same as group A, but the device was coated with chitosan. Group C (n=12); same as group A and then coated three times with 5% PMMA. Group D (n=12); same as group A and then coated three times with 3% PLGA. All CRD prototypes were soaked in 3 mL distilled water for experimental periods and the concentrations of released CHX from each CRD prototype were determined using a UV spectrophotometer. Results showed that release rate of CHX were the greatest in the non-coated group (control group), followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). This data indicate that surface polymers can control the release rate of CHX from the CRD prototypes.

A Study on the Characteristics of Inorganic Polymer Mortar for Concrete Sectional Rehabilitation (콘크리트 단면복구용 무기성 모르타르의 특성에 관한 연구)

  • Hwang, Tae-Ha;Song, Tae-Hyeob;Im, Chil-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.171-177
    • /
    • 2010
  • As concrete structures are exposed to chemical substances, damaged from salt, or progressed to the neutralization, the surface damage of the structures is generated timely fashion, resulting shortened service life. Especially, the sulfate erosion causes rapid surface defects, and the steel skeleton becomes corroded due to the water infiltration, generating stability deterioration of the concrete structure. In this study, the physical characteristics of the acid-resistant mortar with aluminosilicates was investigated in order to resolve problems of the acid resistance, one of the most serious problems of the cement type repair material. As the result of the experiment, the test specimen turned to exhibit almost equivalent physical characteristics with those of concrete sectional repair materials in terms of compressive and bending strengths. As both the cement sectional repair material and the test specimen were immerged in sulfuric acid solution to examine weight changes, the test specimens exhibited only 4% loss of their weights while the cement sectional repair materials reached at the level of 80% or above, proving the excellence acid resistant characteristics of the test specimens. Consequently, the physical characteristics of acid resistant mortar with aluminosilicates were revealed to be superior than those of concrete sectional repair materials. It can be utilized as a sectional repair material where the acidic erosion is anticipated.

A Study on Synthesis Acrylic Polymer Resin and Mechanical Properties Containing Monoammonium Phosphate (Monoammonium phosphate를 포함한 아크릴 수지의 합성 및 물성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.500-508
    • /
    • 2014
  • For this research, synthesis acrylic resin by ethyl acrylate monomer(EAM) and prepared samples which set by difference amount of monoammonium phosphate solution in waterborne acrylic resin. Use these resins, analyzed mechanical properties and thermal stability by films and leather surface coated. The test of DSC experiment sample WAC-APS3 was $410^{\circ}C$ Tm values which means the highest content of monoammonium phosphate had highest thermal stability in acrylic resin. According to measure data for solvent resistance, all samples showed good property. As known in the results, increase of ammonium phosphate constant did not influence to big change of resin properties. In abrasion test WAC-APS3 was good abrasion properties(68.729 mg.loss). Test of tensile strength, as increase as monoammonium phosphate resin analyzed low properties $1.505kgf/mm^2$ to $1.275kgf/mm^2$. In elongation case, same as strength test result 425 % to 384 % by increase to monoammonium phosphate amount in acrylic resin.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Effect of Polymer Backbone Architecture on the Phase Behavior of Poly(ethylene-co-octene) + cyclo-Hydrocarbon Mixtures (Poly(ethylene-co-octene) /고리형탄화수소 2성분계 혼합물의 상거동에 대한 고분자 사슬구조의 영향)

  • Lee, Sang-Ho;Chuug, Sung-Yun;Sohn, Jin-Eun
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.277-283
    • /
    • 2005
  • LV transition curves for poly(ethylene-co-15.3 mol% octene) ($PEO_{15}$) and poly(ethylene- co-17.0 mol% octene) ($PEO_{17}$) were measured in cyclo-pentane and cyclo-hexane. Between $40{\sim}150^{\circ}C$, the LV curve for ($PEO_{15}$ + cyclo pentane) located $1.1{\sim}2.7$ bar higher than that for ($PEO_{17}$+ cyclo-pentane). In cyclo-hexane, similar behavior was observed for $PEO_{15}$ and $PEO_{17}$ solution except the pressure difference reduced to $0.9{\sim}l.6$ bar. If the backbone structure of $PEO_{15}$ were identical to that of $PEO_{17}$, the LV line for $PEO_{17}$ would locate at high pressures than that for $PEO_{15}$, since the number average molecular weight of $PEO_{17}$ (Ave. Mn=153,040) is 1.9 times higher 4han that of $PEO_{15}$ (Ave. Mn=82,200). The difference in the octene comonomer content between $PEO_{15}$ and $PEO_{17}$ is only 1.7 mole%, nevertheless this small difference in the backbone structure of the PEO greatly affected the location of the L-V curves in the mixtures comprised of PEO and cyclo-alkane.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Low-voltage Pentacene Field-Effect Transistors Based on P(S-r-BCB-r-MMA) Gate Dielectrics (P(S-r-BCB-r-MMA) 게이트 절연체를 이용한 저전압 구동용 펜타센 유기박막트랜지스터)

  • Koo, Song Hee;Russell, Thomas P.;Hawker, Craig J.;Ryu, Du Yeol;Lee, Hwa Sung;Cho, Jeong Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.551-554
    • /
    • 2011
  • One of the key issues in the research of organic field-effect transistors (OFETs) is the low-voltage operation. To address this issue, we synthesized poly(styrene-r-benzocyclobutene-r-methyl methacrylate) (P(S-r-BCB-r-MMA)) as a thermally cross-linkable gate dielectrics. The P(S-r-BCB-r-MMA) showed high quality dielectric properties due to the negligible volume change during the cross-linking. The pentacene FETs based on the 34 nm-thick P(S-r-BCB-r-MMA) gate dielectrics operate below 5 V. The P(S-r-BCB-r-MMA) gate dielectrics yielded high device performance, i.e. a field-effect mobility of $0.25cm^2/Vs$, a threshold voltage of -2 V, an sub-threshold slope of 400 mV/decade, and an on/off current ratio of ${\sim}10^5$. The thermally cross-linkable P(S-r-BCB-r-MMA) will provide an attractive candidate for solution-processable gate dielectrics for low-voltage OFETs.

MoS2/CNFs derived from Electrospinning and Heat treatment as the Efficient Electrocatalyst for Hydrogen Eovlution Reaction in Acidic Solution (전기 방사를 이용한 1D / 2D 하이브리드 구조 고활성 MoS2 / CNF 수소 발생 촉매의 합성 및 특성 분석)

  • Lee, Jeong Hun;Park, Yoo Sei;Jang, Myeong Je;Park, Sung Min;Lee, Kyu Hwan;Choi, Woo Sung;Choi, Sung Mook;Kim, Yang Do
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.885-892
    • /
    • 2018
  • Molybdenum disulfide ($MoS_2$) based electrocatalysts have been proposed as substitutes for platinum group metal (PGM) based electrocatalyst to hydrogen evolution reaction (HER) in water electrolysis. Here, we studied $MoS_2/CNFs$ hybrid catalyst prepared by electrospinning method with heat treatment for polymer electrolyte membrane(PEM) water electrolysis to improve the HER activity. The physicochemical and electrochemical properties such as average diameter, crystalline properties, electrocatalitic activity for HER of synthesized $MoS_2/CNFs$ were investigated by the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Raman Spectroscopy (Raman) and Linear Sweep Voltammetry (LSV). The as spun ATTM/PVP nanofibers were prepared by sol-gel and electrospinning method. Subsequently, the $MoS_2/CNFs$ was dereived from reduction heat treatment of ATTM at the ATTM/PVP nanofibers and carbonization heat treatment. Synthesized $MoS_2/CNFs$ electrocatalyst had an average diameter of $179{\pm}30nm$. We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ electrocatalyst consist of 3~4 layers from the Raman results. In addition, We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ catalyst consist of 7.47% octahedral 1T phase $MoS_2$, 63.77% trigonal prismatic 2H phase $MoS_2$ with 28.75% $MoO_3$ through the XRD, Raman and XPS results. It was shown that $MoS_2/CNFs$ had the overpotential of 0.278 V at $10mA/cm^2$ and tafel slope of 74.8 mV/dec in 0.5 M sulfuric acid ($H_2SO_4$) electrolyte.

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte (복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성)

  • Han, Jong Su;Yu, Hakgyoon;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.100-105
    • /
    • 2021
  • Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.