Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.12.885

MoS2/CNFs derived from Electrospinning and Heat treatment as the Efficient Electrocatalyst for Hydrogen Eovlution Reaction in Acidic Solution  

Lee, Jeong Hun (Surface Technology Division, Korea Institute of Material Science(KIMS))
Park, Yoo Sei (Surface Technology Division, Korea Institute of Material Science(KIMS))
Jang, Myeong Je (Surface Technology Division, Korea Institute of Material Science(KIMS))
Park, Sung Min (Surface Technology Division, Korea Institute of Material Science(KIMS))
Lee, Kyu Hwan (Surface Technology Division, Korea Institute of Material Science(KIMS))
Choi, Woo Sung (Surface Technology Division, Korea Institute of Material Science(KIMS))
Choi, Sung Mook (Surface Technology Division, Korea Institute of Material Science(KIMS))
Kim, Yang Do (Department of Materials Science and Engineering, Pusan National University(PNU))
Publication Information
Korean Journal of Metals and Materials / v.56, no.12, 2018 , pp. 885-892 More about this Journal
Abstract
Molybdenum disulfide ($MoS_2$) based electrocatalysts have been proposed as substitutes for platinum group metal (PGM) based electrocatalyst to hydrogen evolution reaction (HER) in water electrolysis. Here, we studied $MoS_2/CNFs$ hybrid catalyst prepared by electrospinning method with heat treatment for polymer electrolyte membrane(PEM) water electrolysis to improve the HER activity. The physicochemical and electrochemical properties such as average diameter, crystalline properties, electrocatalitic activity for HER of synthesized $MoS_2/CNFs$ were investigated by the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Raman Spectroscopy (Raman) and Linear Sweep Voltammetry (LSV). The as spun ATTM/PVP nanofibers were prepared by sol-gel and electrospinning method. Subsequently, the $MoS_2/CNFs$ was dereived from reduction heat treatment of ATTM at the ATTM/PVP nanofibers and carbonization heat treatment. Synthesized $MoS_2/CNFs$ electrocatalyst had an average diameter of $179{\pm}30nm$. We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ electrocatalyst consist of 3~4 layers from the Raman results. In addition, We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ catalyst consist of 7.47% octahedral 1T phase $MoS_2$, 63.77% trigonal prismatic 2H phase $MoS_2$ with 28.75% $MoO_3$ through the XRD, Raman and XPS results. It was shown that $MoS_2/CNFs$ had the overpotential of 0.278 V at $10mA/cm^2$ and tafel slope of 74.8 mV/dec in 0.5 M sulfuric acid ($H_2SO_4$) electrolyte.
Keywords
hydrogen evolution reaction(HER); water electrolysis; electrospinning; $MoS_2/CNF$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. S. Shuba and D. Kifle, Renew. Sust. Energ. Rev. 81, 743 (2018).   DOI
2 S. E. Hosseini and M. A. Wahid, Renew. Sust. Energ. Rev. 57, 850 (2016).   DOI
3 A. Valente, D. Iribarren, and J. Dufour, Int. J. Cycle. Assess. 22, 346 (2017).   DOI
4 K. Zeng and D. Zhang, Prog. Energy Combust. Sci. 36, 307 (2010).   DOI
5 J. Wang, F. Xu, H. Jin, Y. Chen, and Y. Wang, Adv. Mater. 29, 1605838 (2017).   DOI
6 X. Zou and Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015).   DOI
7 E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, and R. E. Schaak, Angew. Chem. Int. Ed. 53, 5427 (2014).   DOI
8 X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, and S. Yang, J. Am. Chem. Soc. 137, 11900 (2015).   DOI
9 A. Han, H. Zhang, R. Yuan, H. Ji, and P. Du, ACS Appl. Mater. Interfaces. 9, 2240 (2017).   DOI
10 I. Dincer and C. A. Car, Int. J. Hydrogen Energy 40, 11094 (2015).   DOI
11 C. Xia, H. Liang, J. Zhu, U. Schwingenschlogl, and H. N. Alshareef, Adv. Energy Mater. 7, 1602089 (2017).   DOI
12 D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, and S. Chen, Electrochim. Acta. 166, 26 (2015).   DOI
13 D. Voiry, J. Yang, and M. Chhowalla, Adv. Mater. 28, 6197 (2016).   DOI
14 Q. Lu, Y. Yu, Q. Ma, B. Chen, and H. Zhang, Adv. Mater. 28, 1917 (2016).   DOI
15 M. Zou, J. Chen, L. Xiao, H. Zhu, T. Yang, M. Zhang, and M. Du, J. Mater. Chem. A. 3, 18090 (2015).   DOI
16 T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Science 317, 100 (2007).   DOI
17 Q. Tang and D. E. Jiang, Acs Catal. 6, 4953 (2016).   DOI
18 Y. Yu, S. Y. Huang, Y. Li, S. N. Steinmann, W. Yang, and L. Cao, Nano lett. 14, 553 (2014).   DOI
19 X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Li. M. A. T. Nguyen, and T. E. Mallouk, Nano lett. 15, 5956 (2015).   DOI
20 R. Vasita and D. S. Katti, Int. J. Nanomed. 1, 15 (2006).   DOI
21 G. Hu, F. Nitze, H. R. Barzegar, T. Sharifi, A. Mikolajczuk, C. W. Tai, and T. Wagberg, J. Power Sources 209, 236 (2012).   DOI
22 P. Q. Pham, U. Sharma, and A. G. Mikos, Tissue Eng. 12, 1197 (2006).   DOI
23 S. H. Chung, P. Han, R. Singhal, V. Kalra, and A. Manthiram, Adv. Energy Mater. 5, 1500738 (2015).   DOI
24 Z. Wei, M. Wan, T. Lin, and L. Dai, Adv. Mater. 15, 136 (2003).   DOI
25 L. T. Song, Z. Y. Wu, F. Zhou, H. W, Liang, Z. Y. Yu, and S. H. Yu, Small 12, 6398 (2016).   DOI
26 S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa, ACS Appl. Mater. Interfaces 1, 1140 (2009).   DOI
27 T. Ichimori, K. Mizuma, T. Uchida, S. Yamazaki, and K. Kimura, J, Appl. Polym. Sci. 128, 1282 (2013).   DOI
28 Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).   DOI
29 A. Rogina, Appl. Surf. Si. 296, 221 (2014).   DOI
30 A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed. 46, 5670 (2007).   DOI
31 S. Liu, X. Zhang, H. Shao, J. Xu, F. Chen, and Y. Feng, Mater. Lett. 73, 223 (2012).   DOI
32 M. P. Ginebra, F. C. M. Driessens, and J. A. Planell, Biomaterials 25, 3453 (2004).   DOI
33 W. Li, L. S. Zhang, Q. Wang, Y. Yu, Z. Chen, C. Cao, and W. G. Song, J. Mater. Chem. 22, 15342 (2012).   DOI
34 M. Hilder, B. Winther-Jensen, D. Li, M. Forsyth, and D. R. MacFarlane, Phys. Chem. Chem. Phys. 13, 9187 (2011).   DOI
35 B. Wang, Y. Xia, G. Wang, Y. Zhou, and H. Wang, Chem. Eng. J. (Amsterdam. Neth.) 309, 417 (2017).
36 D. Mattia, M. P. Rossi, B. M. Kim, G. Korneva, H. H. Bau, and Y. Gogotsi, J. Mater. Chem. B. 110, 9850 (2006).
37 J. Y. Wu, M. N. Lin, L. D. Wang, and T. Zhang, J. Nanomater. 2014, 107 (2014).
38 D. E. Diaz-Droguett, R. El Far, V. M. Fuenzalida, and A. L. Cabrera, Mater. Chem. Phys. 134, 631 (2012).   DOI
39 H. Dong, C. Liu, H. Ye, L. Hu, B. Fugetsu, W. Dai, and X. Zhang, Sci. Rep. 5, 17542 (2015).   DOI
40 S. Patil, A. Harle, S. Sathaye, and K. Patil, Cryst. Eng. Comm. 16, 10845 (2014).   DOI
41 S. H. Lee, C. Tekmen, and W. M. Sigmund, Mater. Sci. Eng. A. 398, 77 (2005).   DOI
42 Y. Lu, X. Yao, J. Yin, G. Peng, P. Cui, and X. Xu, RSC Adv. 5, 7938 (2015).   DOI
43 Y. Pi, Z. Li, D. Xu, J. Liu, Y. Li, F. Zhang, and X. Fan, ACS Sustainable Chem. Eng. 5, 5175 (2017).   DOI
44 D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei, and Z. Wu, J. Mater. Chem. A. 5, 2681 (2017).   DOI
45 S. K. Kim, W. Song, S. Ji, Y. R. Lim, Y. B. Lee, S. Myung, and S. S. Lee, Appl. Surf. Sci. 425, 241 (2017).   DOI
46 A. Ambrosi, Z. Sofer, and M. Pumera, Chem. Commun. 51, 8450 (2015).   DOI
47 Y. Xia, B. Wang, X. Zhao, G. Wang, and H. Wang, Electrochim. Acta. 187, 55 (2016).   DOI
48 L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, and H. H. Girault, Energy Environ. Sci. 7, 387 (2014).   DOI
49 Y. C. Chen, A. Y. Lu, P. Lu, X. Yang, C. M. Jiang, M. Mariano, and L. J. Li, Adv. Mater. 29, 1703863 (2017).   DOI
50 M. Metikos-Hukovic, J. Mol. Catal. A. Chem. 249, 172 (2006).   DOI