Browse > Article

Separation of $SF_6$ from $SF_6/N_2$ Mixtures Using Polymeric Membranes  

Ko, Young-deok (Department of Chemical Engineering, Hanbat National University)
Lee, Hyung-Keun (Greenhouse Gas Research Center, Korea Institute of Energy)
Hong, Seong-Uk (Department of Chemical Engineering, Hanbat National University)
Publication Information
Membrane Journal / v.22, no.1, 2012 , pp. 72-76 More about this Journal
Abstract
$SF_6$ has an extremely high global worming potential (GWP). Therefore, there has been an effort to reduce the use of $SF_6$ and its emission into atmosphere. One possible solution for minimizing the use of $SF_6$ in electrical equipments is utilization of gas mixtures such as $SF_6/N_2$. The $SF_6$ concentration in the gas mixture varies from 10 to 60%. However, when the apparatus is repaired or dismantled, we have to recover $SF_6$ from the gas mixture. Since the boiling point of $SF_6$is low (${\sim}-60^{\circ}C$), the liquefaction method is difficult to apply. One possible alternative is the membrane separation technology. In this study, we investigated the $SF_6$ and $N_2$ permeation properties of 5 polymeric membranes. For example, permeability of $N_2$ in BOPP membrane at $25^{\circ}C$was 0.19 barrer, whereas that of $SF_6$ was only 0.0012 barrer, resulting in the selectivity of 158. An upper bound for $SF_6/N_2$ gas pair was suggested for the first time with n = -1.33 and k = 160 (barrer).
Keywords
polymer membrane; global warming potential; upper bound; $SF_6/N_2$;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Intergovernmental Panel on Climate Change (IPCC), 1995 Report of the Scientific Assessment Working Group of IPCC (1995).
2 L. G. Christophorous, J. K. Olthoff, and D. S. Green, "Gases for electrical insulation and arc interruption: Possible present and future alternatives to pure $SF_{6}$", NIST Technical notes, No. 1425 (1997).
3 H. Hama, M. Yoshimura, K. Inami, and S. Hamano, "Application problems of $SF_{6}$/$N_{2}$ mixtures to gas insulated bus," in Gaseous Dielectrics VIII, pp. 353-359, Kluwer Academic/Plenum Publishers, New York, NY (1998).
4 L. Niemeyers, "$SF_{6}$ recycling in electric power equipments", in Gaseous Dielectrics VIII, pp. 431 -442, Kluwer Academic/Plenum Publishers, New York, NY (1998).
5 H. Lee, M. Lee, H. Lee, and S. Lee, "Permeation and Permselectivity variation of $O_{2},\;CF_{4}$, and $SF_{6}$ through Polymeric Hollow Fiber Membranes", Membrane Journal, 20, 249 (2010).
6 T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membrane Journal, 20, 267 (2010).
7 H. C. Ko, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and H. M. Choi, "Separation and purification of bio gas by hollow fiber gas separation membrane module", Membrane Journal, 21, 177 (2011).
8 O. Yamamoto, T. Takuma, A. Kawamura, K. Hashimoto, N. Hatano, and M. Kinouchi, "$SF_{6}$ gas recovery from $SF_{6}$/$N_{2}$ mixtures using polymer membrane", in Gaseous Dielectrics IX, pp. 555-560, Kluwer Academic/Plenum Publishers, New York, NY (2001).
9 O. Yamamoto, T. Takuma, and M. Kinouchi, "Recovery of $SF_{6}$ from $N_{2}$/$SF_{6}$ gas mixtures by using a polymer membrane", IEEE Electr. Insul. Mag., 18, 32 (2002).
10 M. Pittroff and F. Vondenhof, "Separation of $SF_{6}$/$N_{2}$ mixtures", in Gaseous Dielectrics IX, pp. 561-566, Kluwer Academic/Plenum Publishers, New York, NY (2001).
11 H. Lee, M. Lee, H. Lee, and S. Lee, "Separation and recovery of $SF_{6}$ gas from $N_{2}$/$SF_{6}$ gas mixtures by using a polymer hollow fiber membranes", J. KSEE, 33, 47 (2011).
12 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI   ScienceOn
13 Y. E. Li, J. Kapusta, M. Meinari, and J. Barney, "Capture and recycle: A new option for emission reduction of sulfur hexafluoride in magnesium melting", in Rewas '99: Global Symposium on Recycling, Waste Treatment and Clean Technology, Tms (1999).
14 B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999).   DOI   ScienceOn
15 Y. Ko and S. U. Hong, "Permeation characteristics of air and water vapor through ABS/filler hybrid films", Membrane Journal, 18, 256 (2008).
16 S. H. Ahn, J. A. Seo, J. H. Kim, Y. Ko, and S. U. Hong, "Synthesis and gas permeation properties of amphiphilic graft copolymer membranes", J. Membr. Sci., 345, 128 (2009).   DOI   ScienceOn
17 T. J. Bandosz, J. Jagie-l-lo, K. Putyera, and J. A. Schwarz, "Sieving properties of carbons by template carbonization of polyfurfuryl alcohol within mineral matrixes", Langmuir, 11, 3964 (1995).   DOI   ScienceOn