DOI QR코드

DOI QR Code

A comparison of chlorhexidine release rate from three polymeric controlled release drug prototypes

제어방출형 소독제의 약물전달 체로 사용된 폴리머 유형에 따른 클로르헥시딘 제어 방출속도 비교

  • Bok Young-Bin (Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Korea) ;
  • Lee Doug-Youn (Research Institute of Dental Bomaterials and Bioengineering, Oral Science Research Institute, College of Dentistry, Yonsei University, Seoul, Korea) ;
  • Lee Chang-Young (Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Korea) ;
  • Kim Kyung-Nam (Research Institute of Dental Bomaterials and Bioengineering, Oral Science Research Institute, College of Dentistry, Yonsei University, Seoul, Korea) ;
  • Kum Kee-Yeon (Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Korea)
  • 복영빈 (연세대학교 치과대학 치과보존학교실) ;
  • 이덕연 (연세대학교 치과대학 생체재료학교실) ;
  • 이찬영 (연세대학교 치과대학 치과보존학교실) ;
  • 김경남 (연세대학교 치과대학 생체재료학교실) ;
  • 금기연 (연세대학교 치과대학 치과보존학교실)
  • Published : 2004.11.01

Abstract

Intracanal disinfection of infected root canal is one of important treatment procedure. This in vitro study aimed to evaluate whether the surface polymers of controlled release drug (CRD) can effectively control the release rate of chlorhexidine for root canal disinfection. Four CRD prototypes were prepared: Group A (n=12); The core device (absorbent paper point) was loaded with 40% CHX solution as control. Group B (n=12); same as group A, but the device was coated with chitosan. Group C (n=12); same as group A and then coated three times with 5% PMMA. Group D (n=12); same as group A and then coated three times with 3% PLGA. All CRD prototypes were soaked in 3 mL distilled water for experimental periods and the concentrations of released CHX from each CRD prototype were determined using a UV spectrophotometer. Results showed that release rate of CHX were the greatest in the non-coated group (control group), followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). This data indicate that surface polymers can control the release rate of CHX from the CRD prototypes.

본 연구는 제어방출형 근관소독제(CRD)로 부터 chlorhexidine (CHX)의 방출 속도를 제어하기 위한 3가지 polymer (chitosan, PMMA, PLGA) 의 코팅 효과를 평가하기 위함이다. 80번 paper point (Sure-EndoTM)에 20% CHX를 loading 한 후 각 군당 10개씩 4군으로 분류하였다: Group A: 폴리머를 코팅하지 않은 CRD prototype (control), Group B: chitosan-coated prototype, Group C: PMMA-coated prototype, Group D: PLGA-coated prototype. 모든 시편은 3 ml 증류수가 담긴 큐벳에 넣은 후 3, 6, 10, 20, 30, 40, 50분 마다, 1, 2, 3, 4, 5, 6시간마다 각각 10 μl 씩 채취하고, 1주일 후 다시 10 μl을 채취한 후 UV 흡광도를 이용하여 CHX의 방출 속도를 비교하였다. 실험결과 제어방출형 근관소독제로부터 CHX의 방출속도는 대조군, 키토산, PLGA, PMMA-군 순으로 천천히 일어났으며 PMMA군에서 가장 천천히 일어났다. 결론적으로 제어방출형 근관소독제 표면의 폴리머는 약물 (CHX) 방출속도를 효과적으로 제어하였다.

Keywords

References

  1. Sjogren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis, Int Endod J 30:297-306, 1997 https://doi.org/10.1111/j.1365-2591.1997.tb00714.x
  2. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:86-93, 1998 https://doi.org/10.1016/S1079-2104(98)90404-8
  3. Friedman S, Komorowski R, Maillet W, Klimaite R, Nguyen HQ, Torneck CD. In vivo resistance of coronally induced bacterial ingress by an experimental glass ionomer cement root canal sealer. J Endod 26: 1-5, 2000 https://doi.org/10.1097/00004770-200001000-00001
  4. Bystrom A, Claesson R, Sundqvist G. The antimicrobial effect of camphorated paramonochlorophenol. camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol 1:170-5, 1985 https://doi.org/10.1111/j.1600-9657.1985.tb00652.x
  5. Cvek M, Hollender L, Nord CE. Treatment of non-vital permanent incisors with calcium hydroxide. Odontol Revy 27:93-108. 1976
  6. Orstavik D, Haapasalo M: Disinfection by endodontic irrigants and dressings by experimentally infected dentinal tubules. Endod Dent Traumatol 6 : 142-9, 1990 https://doi.org/10.1111/j.1600-9657.1990.tb00409.x
  7. Orstavik D, Haapasalo M: In-vitro infection and disinfection of dentinal tubules. J Dent Res 66: 1375-9, 1987 https://doi.org/10.1177/00220345870660081801
  8. Gomes BPFA, Souza SFC, Ferraz CCR, Teizeira FB, Zaia AA, Valdrigh L, Souza-Filho FJ. Effectiveness of 2 % chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro. Int Endod J 36:267-75, 2003 https://doi.org/10.1046/j.1365-2591.2003.00634.x
  9. Basrani B, Tajderhane L, Santos M, Pascon E, Grad H, Lawrence HP, Friedman S. Efficacy of chlorhexi-dine- and hydroxide-containing medicaments against Enterococcus faecalis in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96: 618-24, 2003 https://doi.org/10.1016/S1079-2104(03)00166-5
  10. Vianna ME, Gomes BP, Berber VB, Zaia AA, Ferraz CC, de Souza-Filho FJ. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 97:79-84, 2004 https://doi.org/10.1016/S1079-2104(03)00360-3
  11. Jeansonne MJ, White RR. A comparison of 2% chlorhexidine gluconate and and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276-8, 1994 https://doi.org/10.1016/S0099-2399(06)80815-0
  12. White RR, Hay GL, Janer LR. Residual antimicrobial activity after canal irrigation with chlorhexidine. J Endod 23:229-31, 1997 https://doi.org/10.1016/S0099-2399(97)80052-0
  13. Barsani B, Santos JM, Tjaderhane L, Grad H, Gorduysus O, Huang J, Lawrence HP, Friedman S. Substantive antimicrobial activity in chlorhexidine treated human root dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94:240-5, 2002 https://doi.org/10.1067/moe.2002.124002
  14. Komorowski R, Grad H, Wu Y, Friedman S. Antimicrobial substantivity of chlorhexedine-treated bovine root dentin. J Endod 26:315-7, 2000 https://doi.org/10.1097/00004770-200006000-00001
  15. Jung S, Safavi K, Spangberg L: The effectiveness of Chlorhexidine in the prevention of root canal reinfection (abstract). J Endod 25:288, 1999
  16. Heling I,. Sommer M, Steinberg D, Friedman M, Sela MN: Microbiological evaluation of the efficacy of chlorhexidine in a sustained-release device for dentine sterilization. Int Endod J 25: 15-19, 1992 https://doi.org/10.1111/j.1365-2591.1992.tb00943.x
  17. Heling I, Steinberg D, Kenig S, Gavrilovich I, Sela MN, Friedman M: Efficacy of a sustained-release device containing chlorhexidine and Ca (OH)2 in preventing secondary infection of dentinal tubules. Int Endod J 25:20-4, 1992 https://doi.org/10.1111/j.1365-2591.1992.tb00944.x
  18. Miyazaki S, Yamaguchi H, Yokouchi C, Takada M, Hou WM. Sustained-release and intragastric-floating granules of indomethacin using chitosan in rabbits Chem Pharm Bull 36:4033-8, 1988 https://doi.org/10.1248/cpb.36.4033
  19. James MA, Matthew SS: Biodegradation and biocompatibility of PLA and PLGA microsphers. Adv Drug Rev 28:5-24, 1997 https://doi.org/10.1016/S0169-409X(97)00048-3
  20. Cam D. Hyon SH. Ikada Y: Degradation of high molecular weight poly (L-lactide) in alkaline medium. Biomaterials 16:833-43. 1998 https://doi.org/10.1016/0142-9612(95)94144-A
  21. Bayston R, Milner RDG: The sustained release of antimicrobial drugs from bone cement. J Bone Joint Surg 64B:460-4, 1982
  22. Huang J, Wong HL, Zhou Y, Wu XY, Grad H, Komorowski R: In vitro studies and modeling of a controlled-release device for root canal therapy. J Cont Rel 67: 293-307, 2000 https://doi.org/10.1016/S0168-3659(00)00225-X
  23. Singla AK, Chawla M: Chitosan: some pharmaceutical and biological aspects-an update. J Pharm Pharmacol 53:1047-67, 2001 https://doi.org/10.1211/0022357011776441

Cited by

  1. Effect of different chlorhexidine application times on microtensile bond strength to dentin in Class I cavities vol.37, pp.1, 2012, https://doi.org/10.5395/rde.2012.37.1.9
  2. Effect of chlorhexidine application on the bond strength of resin core to axial dentin in endodontic cavity vol.37, pp.4, 2012, https://doi.org/10.5395/rde.2012.37.4.207