DOI QR코드

DOI QR Code

MoS2/CNFs derived from Electrospinning and Heat treatment as the Efficient Electrocatalyst for Hydrogen Eovlution Reaction in Acidic Solution

전기 방사를 이용한 1D / 2D 하이브리드 구조 고활성 MoS2 / CNF 수소 발생 촉매의 합성 및 특성 분석

  • Lee, Jeong Hun (Surface Technology Division, Korea Institute of Material Science(KIMS)) ;
  • Park, Yoo Sei (Surface Technology Division, Korea Institute of Material Science(KIMS)) ;
  • Jang, Myeong Je (Surface Technology Division, Korea Institute of Material Science(KIMS)) ;
  • Park, Sung Min (Surface Technology Division, Korea Institute of Material Science(KIMS)) ;
  • Lee, Kyu Hwan (Surface Technology Division, Korea Institute of Material Science(KIMS)) ;
  • Choi, Woo Sung (Surface Technology Division, Korea Institute of Material Science(KIMS)) ;
  • Choi, Sung Mook (Surface Technology Division, Korea Institute of Material Science(KIMS)) ;
  • Kim, Yang Do (Department of Materials Science and Engineering, Pusan National University(PNU))
  • 이정훈 (한국기계연구원부설재료연구소표면기술연구본부) ;
  • 박유세 (한국기계연구원부설재료연구소표면기술연구본부) ;
  • 장명제 (한국기계연구원부설재료연구소표면기술연구본부) ;
  • 박성민 (한국기계연구원부설재료연구소표면기술연구본부) ;
  • 이규환 (한국기계연구원부설재료연구소표면기술연구본부) ;
  • 최우성 (한국기계연구원부설재료연구소표면기술연구본부) ;
  • 최승목 (한국기계연구원부설재료연구소표면기술연구본부) ;
  • 김양도 (부산대학교재료공학과)
  • Received : 2018.09.03
  • Accepted : 2018.10.17
  • Published : 2018.12.05

Abstract

Molybdenum disulfide ($MoS_2$) based electrocatalysts have been proposed as substitutes for platinum group metal (PGM) based electrocatalyst to hydrogen evolution reaction (HER) in water electrolysis. Here, we studied $MoS_2/CNFs$ hybrid catalyst prepared by electrospinning method with heat treatment for polymer electrolyte membrane(PEM) water electrolysis to improve the HER activity. The physicochemical and electrochemical properties such as average diameter, crystalline properties, electrocatalitic activity for HER of synthesized $MoS_2/CNFs$ were investigated by the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Raman Spectroscopy (Raman) and Linear Sweep Voltammetry (LSV). The as spun ATTM/PVP nanofibers were prepared by sol-gel and electrospinning method. Subsequently, the $MoS_2/CNFs$ was dereived from reduction heat treatment of ATTM at the ATTM/PVP nanofibers and carbonization heat treatment. Synthesized $MoS_2/CNFs$ electrocatalyst had an average diameter of $179{\pm}30nm$. We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ electrocatalyst consist of 3~4 layers from the Raman results. In addition, We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ catalyst consist of 7.47% octahedral 1T phase $MoS_2$, 63.77% trigonal prismatic 2H phase $MoS_2$ with 28.75% $MoO_3$ through the XRD, Raman and XPS results. It was shown that $MoS_2/CNFs$ had the overpotential of 0.278 V at $10mA/cm^2$ and tafel slope of 74.8 mV/dec in 0.5 M sulfuric acid ($H_2SO_4$) electrolyte.

Keywords

Acknowledgement

Grant : 나노구조 촉매 전극을 이용한 전기화학적 고농도 폐수처리 기술개발

Supported by : 한국산업기술평가관리원

References

  1. E. S. Shuba and D. Kifle, Renew. Sust. Energ. Rev. 81, 743 (2018). https://doi.org/10.1016/j.rser.2017.08.042
  2. I. Dincer and C. A. Car, Int. J. Hydrogen Energy 40, 11094 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.035
  3. S. E. Hosseini and M. A. Wahid, Renew. Sust. Energ. Rev. 57, 850 (2016). https://doi.org/10.1016/j.rser.2015.12.112
  4. A. Valente, D. Iribarren, and J. Dufour, Int. J. Cycle. Assess. 22, 346 (2017). https://doi.org/10.1007/s11367-016-1156-z
  5. K. Zeng and D. Zhang, Prog. Energy Combust. Sci. 36, 307 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
  6. J. Wang, F. Xu, H. Jin, Y. Chen, and Y. Wang, Adv. Mater. 29, 1605838 (2017). https://doi.org/10.1002/adma.201605838
  7. X. Zou and Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015). https://doi.org/10.1039/C4CS00448E
  8. E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, and R. E. Schaak, Angew. Chem. Int. Ed. 53, 5427 (2014). https://doi.org/10.1002/anie.201402646
  9. X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, and S. Yang, J. Am. Chem. Soc. 137, 11900 (2015). https://doi.org/10.1021/jacs.5b07728
  10. A. Han, H. Zhang, R. Yuan, H. Ji, and P. Du, ACS Appl. Mater. Interfaces. 9, 2240 (2017). https://doi.org/10.1021/acsami.6b10983
  11. C. Xia, H. Liang, J. Zhu, U. Schwingenschlogl, and H. N. Alshareef, Adv. Energy Mater. 7, 1602089 (2017). https://doi.org/10.1002/aenm.201602089
  12. D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, and S. Chen, Electrochim. Acta. 166, 26 (2015). https://doi.org/10.1016/j.electacta.2015.03.067
  13. D. Voiry, J. Yang, and M. Chhowalla, Adv. Mater. 28, 6197 (2016). https://doi.org/10.1002/adma.201505597
  14. Q. Lu, Y. Yu, Q. Ma, B. Chen, and H. Zhang, Adv. Mater. 28, 1917 (2016). https://doi.org/10.1002/adma.201503270
  15. M. Zou, J. Chen, L. Xiao, H. Zhu, T. Yang, M. Zhang, and M. Du, J. Mater. Chem. A. 3, 18090 (2015). https://doi.org/10.1039/C5TA04426J
  16. T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Science 317, 100 (2007). https://doi.org/10.1126/science.1141483
  17. Q. Tang and D. E. Jiang, Acs Catal. 6, 4953 (2016). https://doi.org/10.1021/acscatal.6b01211
  18. Y. Yu, S. Y. Huang, Y. Li, S. N. Steinmann, W. Yang, and L. Cao, Nano lett. 14, 553 (2014). https://doi.org/10.1021/nl403620g
  19. X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Li. M. A. T. Nguyen, and T. E. Mallouk, Nano lett. 15, 5956 (2015). https://doi.org/10.1021/acs.nanolett.5b02091
  20. R. Vasita and D. S. Katti, Int. J. Nanomed. 1, 15 (2006). https://doi.org/10.2147/nano.2006.1.1.15
  21. G. Hu, F. Nitze, H. R. Barzegar, T. Sharifi, A. Mikolajczuk, C. W. Tai, and T. Wagberg, J. Power Sources 209, 236 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.080
  22. P. Q. Pham, U. Sharma, and A. G. Mikos, Tissue Eng. 12, 1197 (2006). https://doi.org/10.1089/ten.2006.12.1197
  23. S. H. Chung, P. Han, R. Singhal, V. Kalra, and A. Manthiram, Adv. Energy Mater. 5, 1500738 (2015). https://doi.org/10.1002/aenm.201500738
  24. Z. Wei, M. Wan, T. Lin, and L. Dai, Adv. Mater. 15, 136 (2003). https://doi.org/10.1002/adma.200390027
  25. L. T. Song, Z. Y. Wu, F. Zhou, H. W, Liang, Z. Y. Yu, and S. H. Yu, Small 12, 6398 (2016). https://doi.org/10.1002/smll.201602334
  26. S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa, ACS Appl. Mater. Interfaces 1, 1140 (2009). https://doi.org/10.1021/am9001474
  27. T. Ichimori, K. Mizuma, T. Uchida, S. Yamazaki, and K. Kimura, J, Appl. Polym. Sci. 128, 1282 (2013). https://doi.org/10.1002/app.38554
  28. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7
  29. A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed. 46, 5670 (2007). https://doi.org/10.1002/anie.200604646
  30. A. Rogina, Appl. Surf. Si. 296, 221 (2014). https://doi.org/10.1016/j.apsusc.2014.01.098
  31. S. Liu, X. Zhang, H. Shao, J. Xu, F. Chen, and Y. Feng, Mater. Lett. 73, 223 (2012). https://doi.org/10.1016/j.matlet.2012.01.024
  32. M. P. Ginebra, F. C. M. Driessens, and J. A. Planell, Biomaterials 25, 3453 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.049
  33. W. Li, L. S. Zhang, Q. Wang, Y. Yu, Z. Chen, C. Cao, and W. G. Song, J. Mater. Chem. 22, 15342 (2012). https://doi.org/10.1039/c2jm32031b
  34. M. Hilder, B. Winther-Jensen, D. Li, M. Forsyth, and D. R. MacFarlane, Phys. Chem. Chem. Phys. 13, 9187 (2011). https://doi.org/10.1039/c1cp20173e
  35. B. Wang, Y. Xia, G. Wang, Y. Zhou, and H. Wang, Chem. Eng. J. (Amsterdam. Neth.) 309, 417 (2017).
  36. D. Mattia, M. P. Rossi, B. M. Kim, G. Korneva, H. H. Bau, and Y. Gogotsi, J. Mater. Chem. B. 110, 9850 (2006).
  37. J. Y. Wu, M. N. Lin, L. D. Wang, and T. Zhang, J. Nanomater. 2014, 107 (2014).
  38. D. E. Diaz-Droguett, R. El Far, V. M. Fuenzalida, and A. L. Cabrera, Mater. Chem. Phys. 134, 631 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.042
  39. H. Dong, C. Liu, H. Ye, L. Hu, B. Fugetsu, W. Dai, and X. Zhang, Sci. Rep. 5, 17542 (2015). https://doi.org/10.1038/srep17542
  40. S. Patil, A. Harle, S. Sathaye, and K. Patil, Cryst. Eng. Comm. 16, 10845 (2014). https://doi.org/10.1039/C4CE01595A
  41. S. H. Lee, C. Tekmen, and W. M. Sigmund, Mater. Sci. Eng. A. 398, 77 (2005). https://doi.org/10.1016/j.msea.2005.03.014
  42. Y. Lu, X. Yao, J. Yin, G. Peng, P. Cui, and X. Xu, RSC Adv. 5, 7938 (2015). https://doi.org/10.1039/C4RA14026E
  43. D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei, and Z. Wu, J. Mater. Chem. A. 5, 2681 (2017). https://doi.org/10.1039/C6TA09409K
  44. S. K. Kim, W. Song, S. Ji, Y. R. Lim, Y. B. Lee, S. Myung, and S. S. Lee, Appl. Surf. Sci. 425, 241 (2017). https://doi.org/10.1016/j.apsusc.2017.06.211
  45. A. Ambrosi, Z. Sofer, and M. Pumera, Chem. Commun. 51, 8450 (2015). https://doi.org/10.1039/C5CC00803D
  46. Y. Pi, Z. Li, D. Xu, J. Liu, Y. Li, F. Zhang, and X. Fan, ACS Sustainable Chem. Eng. 5, 5175 (2017). https://doi.org/10.1021/acssuschemeng.7b00518
  47. Y. Xia, B. Wang, X. Zhao, G. Wang, and H. Wang, Electrochim. Acta. 187, 55 (2016). https://doi.org/10.1016/j.electacta.2015.11.047
  48. L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, and H. H. Girault, Energy Environ. Sci. 7, 387 (2014). https://doi.org/10.1039/C3EE42441C
  49. Y. C. Chen, A. Y. Lu, P. Lu, X. Yang, C. M. Jiang, M. Mariano, and L. J. Li, Adv. Mater. 29, 1703863 (2017). https://doi.org/10.1002/adma.201703863
  50. M. Metikos-Hukovic, J. Mol. Catal. A. Chem. 249, 172 (2006). https://doi.org/10.1016/j.molcata.2006.01.020