Browse > Article
http://dx.doi.org/10.1186/s40824-018-0135-9

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity  

Siddiqi, Khwaja Salahuddin (Department of Chemistry, Aligarh Muslim University)
Rashid, M. (Department of Saidla, Aligarh Muslim University)
Rahman, A. (Department of Saidla, Aligarh Muslim University)
Tajuddin, Tajuddin (Department of Saidla, Aligarh Muslim University)
Husen, Azamal (Department of Biology, College of Natural and Computational Sciences, University of Gondar)
Rehman, Sumbul (Department of Ilmul Advia (Unani Pharmacy), Aligarh Muslim University)
Publication Information
Biomaterials Research / v.22, no.4, 2018 , pp. 328-336 More about this Journal
Abstract
Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.
Keywords
Biosynthesis; Usnea longissima; Silver nanoparticles; Electron microscopy; Antimicrobial activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eugino M, Muller N, Frases S, Almeida-Paes R, Mauricio LMTR, Lemgruber L, Farina M, de-Souza W, Anna CS. Test-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv. 2016;6:9893-904.   DOI
2 Rajput S, Werezuk R, Lange RM, McDermott MT. Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability. Langmuir. 2016;32:8688-97.   DOI
3 Zhang JZ, Nogues C. Plasmonic optical properties and applications of metal nanostructures. Plasmonics. 2008;3:127-50.   DOI
4 Rajakumar G, Gomathi T, Thiruvengadam M, Rajeswari VD, Kalpana VN, Chung IM. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microb Pathogen. 2017;103:123-8.   DOI
5 Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerf. 2017;65:150-3.
6 Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crop Prod. 2004;52:562-6.
7 Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part a and part B, 2 Vol set, 6thEdition. John Wiley & Sons, Inc. USA, 2009.
8 Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32.   DOI
9 Hong X, Wen J, Xiong X, Hu Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res. 2016;23:4489-97.   DOI
10 Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974-83.   DOI
11 Saravanan M, Amelash T, Negash L, Gebreyesus A, Selvaraj A, Rayar V. Deekonda K extracellular biosynthesis and biomedical application of silver nanoparticles synthesized from Baker's yeast. Int J Res Pharm Biomed Sci. 2013;4:822-8.
12 Bonnigala B, Aswani Kumar YVV, Vinay Viswanath K, Joy Richardson P, Mangamuri UK, Poda S. Anticancer activity of plant mediated silver nanoparticles on selected cancer cell lines. J Chem Pharma Res. 2016;8:276-81.
13 Husen A, Siddiqi KS. Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol. 2014;12:16.   DOI
14 Siddiqi KS, Husen A, Sohrab SS, Osman M. Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nano Res Lett. 2018;13:231.   DOI
15 Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett. 2014;9:229.   DOI
16 Husen A, Siddiqi KS. Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol. 2014;12:28.   DOI
17 Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nano Res Lett. 2016;11:98.   DOI
18 Siddiqi KS, Husen A. Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nano Res Lett. 2016;11:363.   DOI
19 Siddiqi, Husen A. Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett. 2016;11:400.   DOI
20 Siddiqi KS, Rahman A, Tajuddin HA. Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett. 2016;11:498.   DOI
21 Siddiqi KS, Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elements Med Biol. 2017;40:10-23.   DOI
22 Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16:14.   DOI
23 Siddiqi KS, Rahman A, Tajuddin HA. Properties of zinc oxide nanoparticles and their activity against microbes. Nano Res Lett. 2018;13:141.   DOI
24 Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sensors Actuators B Chem. 2013;183:144-9.   DOI
25 Venkateswarlu S, Kumar BN, Prathima B, Anitha K, Jyothi NVV. A novel green synthesis of Fe3O4-ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Physica B. 2015;457:30-5.   DOI
26 Rao Y, Kotakadi VS, Prasad TNVKV, Reddy AV, Sai Gopal DVR. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim Acta A. 2013;103:156-9.   DOI
27 Siddiqi KS, Husen A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nano Res Lett. 2016;11:482.   DOI
28 Latha M, Priyanka M, Rajasekar P, Manikandan R, Prabhu NM. Biocompatibility and antibacterial activity of the Adathoda vasica Linn extract mediated silver nanoparticles. Microb Pathog. 2016;93:88-94.   DOI
29 Husen A. Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpourn M, Manika K, Varma A, editors. Nanoscience and plant-soil systems, vol. 48. Switzerland: Springer international publishing AG, Gewerbestrasse 11, 6330 Cham; 2017. p. 455-79.
30 Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mat Sci Eng C. 2016;58:36-43.   DOI
31 Tran TA, Kinch L, PenaLlopis S, Kockel L, Grishin N, Jiang H, Brugarolas J. Platelet-derived growth factor/vascular endothelial growth factor receptor inactivation by sunitinib results in Tsc1/Tsc2-dependent inhibition of TORC1. Mol Cell Biol. 2013;33:3762-79.   DOI
32 Austin B, Austin DA. Bacterial fish pathogens. Diseases of farmed and wild fish, springer-praxis publishing, ltd., United Kingdom, 1999.
33 Cai JP, Li J, Thompson KD, Li CX, Han HC. Isolation and characterization of pathogenic Vibrio parahaemolyticus from diseased post-larvae of abalone Haliotis diversicolor supertexta. J Basic Microbiol. 2007;47:84-6.   DOI
34 Jayasree L, Janakiram P, Madhavi R. Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J World Aquacult Soc. 2006;37:523-32.   DOI
35 Nishitoba Y, Nishimura I, Nishiyama T, Mizutani J. Lichen acids, plant growth inhibitors from Usnea longissima. Phytochemistry. 1987;26:3181-5.   DOI
36 Yu X, Guo Q, Su G, Yang A, Hu Z, Qu C, Wan Z, Li R, Tu P, Chai X. Usnic acid derivatives with cytotoxic and antifungal activities from the lichen Usnea longissima. J Nat Prod. 2016;79:1373-80.   DOI
37 Favreau JT, Ryu ML, Braunstein G, Orshansky G, Park SS, Goody GL, Love L, Fong TL. Severe hepatotoxicity associated with the dietary supplement LipoKinetix. Ann Intern Med. 2002;136:590-5.   DOI
38 Neff GW, Reddy KR, Durazo FA, Meyer D, Marrero R, Kaplowitz N. Severe hepatotoxicity associated with the use of weight loss diet supplements containing ma huang or usnic acid. J Hepatol. 2004;41:1062-4.   DOI
39 Guo L, Shi Q, Fang JL, Mei N, Ali AA, Lewis SM, Leakey JEA, Frankos VH. Review of usnic acid and Usnea barbata toxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008;26:317-38.   DOI
40 Wei JC, Wang XY, Wu JL, Wu JN, Chen XL, Hou JL. Lichenes Officinales Sinenses. Beijing: Science press; 1982. p. 18-58.
41 Luzina OA, Salakhutdinov NF. Biological activity of usnic acid and its derivatives: part 2. Effects on higher organisms. Molecular and physicochemical aspects. Rus J Bioorg Chem. 2016;42:249-68.   DOI
42 Halici M, Odabasoglu F, Suleyman H, Cakir A, Aslan A, Bayir Y. Effects of water extract of Usnea longissima on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Phytomedicine. 2005;12:656-62.   DOI
43 Fernandez-Moriano C, Gomez-Serranillos MP, Crespo A. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharm Biol. 2016;54:1-17.   DOI
44 Luzina OA, Salakhutdinov NF. Biological activity of usnic acid and its derivatives: part 1. Activity against unicellular organisms. Rus J Bioorg Chem. 2016;42:115-32.   DOI
45 Yamamoto Y, Miura Y, Kinoshita Y, Higuchi M, Yamada Y, Murakami A, Ohigashi H, Koshimizu K. Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation. Chem Pharm Bull (Tokyo). 1995;43:1388-90.   DOI
46 Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Halici M, Bayir Y. Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res. 2004;18:938-41.   DOI
47 Turhan K, Ekinci-Dogan C, Akcin G, Aslan A. Biosorption of au(III) and cu(II) from aqueous solution by a non-living Usnea longissima biomass. Fres Environ Bull. 2005;14:1129-35.