• 제목/요약/키워드: polyhydroxyalkanoates (PHAs)

검색결과 33건 처리시간 0.02초

Polyhydroxyalkanoates의 생산 및 응용 (Production and Application of Polyhydroxyalkanoates)

  • 이상엽;이영최종일
    • KSBB Journal
    • /
    • 제10권4호
    • /
    • pp.406-420
    • /
    • 1995
  • Polyhydroxyalkanoates[PHAs] are the polyester of hydroxyalkanoates(HAs) synthesized by numerous bacteria as an intracellular carbon and energy storage compound and accumulated as granules in the cytoplasm of the cells under unbalanced growth condition in the presence of excess carbon source. Even though PHAs have been recognized as good candidates for biodegradable plastics, their high price compared with conventional plastics has limited their use in a wide mange of applications. To reduce the high production cost of PHAs, many group of scientists have devoted much efforts to improve productivity by employing various microorganisms and by developing efficient culture techniques. The strategies of producing PHAs to a high concentration with high productivity and their potential applications are reviewed.

  • PDF

Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates

  • Kim, Do-Young;Kim, Hyung-Woo;Chung, Moon-Gyu;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.87-97
    • /
    • 2007
  • Medium-chain-length polyhydroxyalkanoates (MCL-PHAs), which have constituents with a typical chain length of $C_{6}-C_{14}$, are polyesters that are synthesized and accumulated in a wide variety of Gram-negative bacteria, mainly pseudomonads. These biopolyesters are promising materials for various applications because they have useful mechanical properties and are biodegradable and biocompatible. The versatile metabolic capacity of some Pseudomonas spp. enables them to synthesize MCL-PHAs that contain various functional substituents; these MCL-PHAs are of great interest because these functional groups can improve the physical properties of the polymers, allowing the creation of tailor-made products. Moreover, some functional substituents can be modified by chemical reactions to obtain more useful groups that can extend the potential applications of MCL-PHAs as environmentally friendly polymers and functional biomaterials for use in biomedical fields. Although MCL-PHAs are water-insoluble, hydrophobic polymers, they can be degraded by microorganisms that produce extracellular MCL-PHA depolymerase. MCL-PHA-degraders are relatively uncommon in natural environments and, to date, only a limited number of MCL-PHA depolymerases have been investigated at the molecular level. All known MCL-PHA depolymerases share a highly significant similarity in amino acid sequences, as well as several enzymatic characteristics. This paper reviews recent advances in our knowledge of MCL-PHAs, with particular emphasis on the findings by our research group.

연속회분식 처리시스템에서 인공하수를 이용한 Polyhydroxyalkanoates (PHAs)의 생산 (Production of Polyhydroxyalkanoates (PHAs) from Sequencing Batch Reactor Using Synthetic Wastewater)

  • 손재협;차상협;박준모;박흥석
    • 대한환경공학회지
    • /
    • 제37권6호
    • /
    • pp.363-370
    • /
    • 2015
  • 인공폐수로 연속회분식 하수처리시스템에서 바이오플라스틱인 PHAs의 생산에 대하여 연구하였다. 실험은 하수처리장에서 식종슬러지를 채취하고, 실험실 내에서 제작된 인공하수를 이용하여 4 L 규모의 2조의 연속회분식반응기로 수행하였다. 인공하수의 영양조건(C/N/P)은 42:10:1로 운전되었으며, 연속회분식반응기는 호기상태에서 Feast/Famine 조건을 부여하는 ADF (aerobic dynamic feeding)의 SBR 1과 혐기/호기조건에서 Feast/Famine 조건을 부여하는 AODF (anaerobic/oxic dynamic feeding)의 SBR 2로 운전하였다. PHAs의 생산은 AODF가 ADF 보다 우수하였으며, ADOF 에서 바이오매스 대비 최대 40.0%(w/w)로 높게 생산되었으며, 구조적 및 열적 물성도 우수한 것으로 나타났다.

Pseudomonas sp. RY-1에 의한 Medium-chain-length Polyhydroxyalkanoates의 생분해 (Biodegradation of Medium-chain-length Polyhydroxyalkanoates by Pseudomonas sp. RY-1)

  • 류강은;김영백;양영기;이영하
    • 미생물학회지
    • /
    • 제36권2호
    • /
    • pp.84-90
    • /
    • 2000
  • Psudomonas sp. RY-1이 생성하는 extracellular depolymerase system을 이용하여 단위체의 결가지에 서로 다른 탄소 길이와 불포와기를 함유하는 medium-chain-length polyhdroxyalkanoates (MCL-PHAs)의 생분해도를 시럼실 조건에서 조사하였다. 생분애도는 평파내지에서의 clear zone 형성, 효소 처리에 의한 고분자 현탁액의 탁도 감소 및 호흡량의 경시적 변화로 측정하였다. Pseudomonas sp. RY-1은 MCL-PHA depolymerase의 생성을 통하여 조사된 모든 종류의 MCl-PHAs를 분해할 수 있었으나, 이 효소의 생성은 쉽게 이용될수 있는 이차기질에 의해 저해받는 것으로 나타났다. MCl-PHAs의 분해율이 단위체의 탄소수가 홀수개로 구성된 고분자에 비하여 보다 높았다. 곁가지에 분포화기를 함유한 MCl-PHAs는 불포화기를 갖지 아니하는 고분자에 비하여 분해가 빠르게 이루어졌으며, 이들의 분해는 고분자의 결정화도와 밀접한 관련이 있는 것으로 나타났다.

  • PDF

Biological Treatment of Two-Phase Olive Mill Wastewater (TPOMW, alpeorujo): Polyhydroxyalkanoates (PHAs) Production by Azotobacter Strains

  • Cerrone, Federico;Sanchez-Peinado, Maria Del Mar;Juarez-Jimenez, Belen;Gonzalez-Lopez, Jesus;Pozo, Clementina
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.594-601
    • /
    • 2010
  • Azotobacter chroococcum H23 (CECT 4435), Azotobacter vinelandii UWD, and Azotobacter vinelandii (ATCC 12837), members of the family Pseudomonadaceae, were used to evaluate their capacity to grow and accumulate polyhydroxyalkanoates (PHAs) using two-phase olive mill wastewater (TPOMW, alpeorujo) diluted at different concentrations as the sole carbon source. The PHAs amounts (g/l) increased clearly when the TPOMW samples were previously digested under anaerobic conditions. The MNR analysis demonstrated that the bacterial strains formed only homopolymers containing $\beta$-hydroxybutyrate, either when grown in diluted TPOMW medium or diluted anaerobically digested TPOMW medium. COD values of the diluted anaerobically digested waste were measured before and after the aerobic PHA-storing phase, and a clear reduction (72%) was recorded after 72 h of incubation. The results obtained in this study suggest the perspectives for using these bacterial strains to produce PHAs from TPOMW, and in parallel, contribute efficiently to the bioremediation of this waste. This fact seems essential if bioplastics are to become competitive products.

Metabolic Engineering of Escherichia coli for Production of Polyhydroxyalkanoates with Hydroxyvaleric Acid Derived from Levulinic Acid

  • Kim, Doyun;Lee, Sung Kuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.110-116
    • /
    • 2022
  • Polyhydroxyalkanoates (PHAs) are emerging as alternatives to plastics by replacing fossil fuels with renewable raw substrates. Herein, we present the construction of engineered Escherichia coli strains to produce short-chain-length PHAs (scl-PHAs), including the monomers 4-hydroxyvalerate (4HV) and 3-hydroxyvalerate (3HV) produced from levulinic acid (LA). First, an E. coli strain expressing genes (lvaEDABC) from the LA metabolic pathway of Pseudomonas putida KT2440 was constructed to generate 4HV-CoA and 3HV-CoA. Second, both PhaAB enzymes from Cupriavidus necator H16 were expressed to supply 3-hydroxybutyrate (3HB)-CoA from acetyl-CoA. Finally, PHA synthase (PhaCCv) from Chromobacterium violaceum was introduced for the subsequent polymerization of these three monomers. The resulting E. coli strains produced four PHAs (w/w% of dry cell weight): 9.1 wt% P(4HV), 1.7 wt% P(3HV-co-4HV), 24.2 wt% P(3HB-co-4HV), and 35.6 wt% P(3HB-co-3HV-co-4HV).

Mcl-PHAs Produced by Pseudomonas sp. Gl01 Using Fed-Batch Cultivation with Waste Rapeseed Oil as Carbon Source

  • Mozejko, Justyna;Wilke, Andreas;Przybylek, Grzegorz;Ciesielski, Slawomir
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.371-377
    • /
    • 2012
  • The present study describes medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production by the Pseudomonas Gl01 strain isolated from mixed microbial communities utilized for PHAs synthesis. A two-step fed-batch fermentation was conducted with glucose and waste rapeseed oil as the main carbon source for obtaining cell growth and mcl-PHAs accumulation, respectively. The results show that the Pseudomonas Gl01 strain is capable of growing and accumulating mcl-PHAs using a waste oily carbon source. The biomass value reached 3.0 g/l of CDW with 20% of PHAs content within 48 h of cultivation. The polymer was purified from lyophilized cells and analyzed by gas chromatography (GC). The results revealed that the monomeric composition of the obtained polyesters depended on the available substrate. When glucose was used in the growth phase, 3-hydroxyundecanoate and 3-hydroxydodecanoate were found in the polymer composition, whereas in the PHAs-accumulating stage, the Pseudomonas Gl01 strain synthesized mcl-PHAs consisting mainly of 3-hydroxyoctanoate and 3-hydroxydecanoate. The transcriptional analysis using reverse-transcription real-time PCR reaction revealed that the phaC1 gene could be transcribed simultaneously to the phaZ gene.

Short-Chain-Length Polyhydroxyalkanoates: Synthesis in Metabolically Engineered Escherichia coli and Medical Applications

  • PARK, SI-JAE;CHOI, JONG-IL;LEE, SANG-YUP
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.206-215
    • /
    • 2005
  • Polyhydroxyalkanoates (PHAs) are homo or hetero polyesters of (R)-hydroxyalkanoates accumulated in various microorganisms under growth-limiting condition in the presence of excess carbon source. They have been suggested as biodegradable substitutes for chemically synthesized polymers. Recombinant Escherichia coli is one of the promising host strains for the economical production of PHAs, and has been extensively investigated for the process development. The heterologous PHA biosynthetic pathways have been established through the metabolic engineering and inherent metabolic pathways of E. coli have been redirected to supply PHA precursors. Fermentation strategies for cultivating these recombinant E. coli strains have also been developed for the efficient production of PHAs. Nowadays, short-chain-length (SCL) PHAs are being re-invited due to its improved mechanical properties and possible applications in the biomedical area. In this article, recent advances in the development of metabolically engineered E. coli strains for the enhanced production of SCL-PHAs are reviewed. Also, medical applications of SCL-PHAs are discussed.

Cultivation-Dependent and -Independent Characterization of Microbial Community Producing Polyhydroxyalkanoates from Raw Glycerol

  • Ciesielski, Slawomir;Pokoj, Tomasz;Klimiuk, Ewa
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.853-861
    • /
    • 2010
  • High substrate costs decrease the profitability of polyhydroxyalkanoates (PHAs) production, and thus low-cost carbon substrates coming from agricultural and industrial residuals are tested for the production of these biopolymers. Among them, crude glycerol, formed as a by-product during biodiesel production, seems to be the most promising source of carbon. The object of this study was to characterize the mixed population responsible for the conversion of crude glycerol into PHAs by cultivation-dependent and -independent methods. Enrichment of the microbial community was monitored by applying the Ribosomal Intergenic Spacer Analysis (RISA), and the identification of community members was based on 16S rRNA gene sequencing of cultivable species. Molecular analysis revealed that mixed populations consisted of microorganisms affiliated with four bacterial lineages: ${\alpha}$, ${\gamma}$-Proteobacteria, Actinobacteria, and Bacteroides. Among these, three Pseudomonas strains and Rhodobacter sp. possessed genes coding for polyhydroxyalkanoates synthase. Comparative analysis revealed that most of the microorganisms detected by direct molecular analysis were obtained by the traditional culturing method.

Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12

  • Kang, Du-Kyeong;Lee, Cho-Ryong;Lee, Sun Hee;Bae, Jung-Hoon;Park, Young-Kwon;Rhee, Young Ha;Sung, Bong Hyun;Sohn, Jung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.990-994
    • /
    • 2017
  • Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of PHAs from crude sludge palm oil (SPO) as an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.