Browse > Article
http://dx.doi.org/10.4014/jmb.2108.08016

Metabolic Engineering of Escherichia coli for Production of Polyhydroxyalkanoates with Hydroxyvaleric Acid Derived from Levulinic Acid  

Kim, Doyun (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST))
Lee, Sung Kuk (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.1, 2022 , pp. 110-116 More about this Journal
Abstract
Polyhydroxyalkanoates (PHAs) are emerging as alternatives to plastics by replacing fossil fuels with renewable raw substrates. Herein, we present the construction of engineered Escherichia coli strains to produce short-chain-length PHAs (scl-PHAs), including the monomers 4-hydroxyvalerate (4HV) and 3-hydroxyvalerate (3HV) produced from levulinic acid (LA). First, an E. coli strain expressing genes (lvaEDABC) from the LA metabolic pathway of Pseudomonas putida KT2440 was constructed to generate 4HV-CoA and 3HV-CoA. Second, both PhaAB enzymes from Cupriavidus necator H16 were expressed to supply 3-hydroxybutyrate (3HB)-CoA from acetyl-CoA. Finally, PHA synthase (PhaCCv) from Chromobacterium violaceum was introduced for the subsequent polymerization of these three monomers. The resulting E. coli strains produced four PHAs (w/w% of dry cell weight): 9.1 wt% P(4HV), 1.7 wt% P(3HV-co-4HV), 24.2 wt% P(3HB-co-4HV), and 35.6 wt% P(3HB-co-3HV-co-4HV).
Keywords
Levulinic acid; Escherichia coli; short-chain-length polyhydroxyalkanoates (scl-PHAs);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Favaro L, Basaglia M, Casella S. 2019. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuels Bioprod. Biorefining 13: 208-227.   DOI
2 Langenbach S, Rehm BHA, Steinbuchel A. 1997. Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol. Lett. 150: 303-309.   DOI
3 Novackova I, Kucera D, Porizka J, Pernicova I, Sedlacek P, Koller M, et al. 2019. Adaptation of Cupriavidus necator to levulinic acid for enhanced production of P(3HB-co-3HV) copolyesters. Biochem. Eng. J. 151: 107350.   DOI
4 Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6: 343-345.   DOI
5 Matsumoto Ki, Yamada M, Leong CR, Jo S-J, Kuzuyama T, Taguchi S. 2011. A new pathway for poly (3-hydroxybutyrate) production in Escherichia coli and Corynebacterium glutamicum by functional expression of a new acetoacetyl-coenzyme A synthase. Biosci. Biotechnol. Biochem. 75: 364-366.   DOI
6 Yu J. 2007. Microbial production of bioplastics from renewable resources, pp. 585-610. Bioprocessing for value-added products from renewable resources, Ed. Elsevier,
7 Pettinari MJ, Vazquez GJ, Silberschmidt D, Rehm B, Steinbuchel A, Mendez BS. 2001. Poly (3-hydroxybutyrate) synthesis genes in Azotobacter sp. strain FA8. Appl. Environ. Microbiol. 67: 5331-5334.   DOI
8 Napper IE, Thompson RC. 2019. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ. Sci. Technol. 53: 4775-4783.   DOI
9 Bhatia SK, Gurav R, Choi T-R, Jung H-R, Yang S-Y, Moon Y-M, et al. 2019. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour. Technol. 271: 306-315.   DOI
10 Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, et al. 2017. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat. Microbiol. 2: 1624-1634.   DOI
11 Juengert JR, Bresan S, Jendrossek D. 2018. Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and nile red staining. Bio Protoc. 8: e2748.
12 Raza ZA, Abid S, Banat IM. 2018. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation 126: 45-56.   DOI
13 Snell KD, Feng F, Zhong L, Martin D, Madison LL. 2002. YfcX enables medium-chain-length poly (3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains. J. Bacteriol. 184: 5696-5705.   DOI
14 Kim BS, Lee SY. 2000. Production of poly (3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb. Technol. 27: 774-777.   DOI
15 Aldor IS, Keasling JD. 2003. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotechnol. 14: 475-483.   DOI
16 Pena C, Castillo T, Garcia A, Millan M, Segura D. 2014. Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb. Biotechnol. 7: 278-293.   DOI
17 Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462.   DOI
18 Mozejko-Ciesielska J, Kiewisz R. 2016. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 192: 271-282.   DOI
19 Valentin HE, Steinbuchel A. 1995. Accumulation of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J. Environ. Polymer Degradation 3: 169-175.   DOI
20 Cha D, Ha HS, Lee SK. 2020. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresour. Technol. 309: 123332.   DOI
21 Ren Q, Beilen JBv, Sierro N, Zinn M, Kessler B, Witholt B. 2005. Expression of PHA polymerase genes of Pseudomonas putida in Escherichia coli and its effect on PHA formation. Antonie Van Leeuwenhoek 87: 91-100.   DOI
22 Lemoigne M. 1926. Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull. Chem. Soc. Japan 8: 770-782.
23 Koller M, Hesse P, Fasl H, Stelzer F, Braunegg G. 2017. Study on the effect of levulinic acid on whey-based biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Hydrogenophaga pseudoflava. Appl. Food Biotechnol. 4: 65-78.
24 Muzaiyanah AR, Amirul AA. 2013. Studies on the microbial synthesis and characterization of polyhydroxyalkanoates containing 4-hydroxyvalerate using γ-valerolactone. Appl. Biochem. Biotechnol. 170: 1194-1215.   DOI
25 Gahlawat G, Soni SK. 2017. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour. Technol. 243: 492-501.   DOI
26 Liu S-J, Steinbuchel A. 2000. A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli. Appl. Environ. Microbiol. 66: 739-743.   DOI
27 Kim D, Sathesh-Prabu C, JooYeon Y, Lee SK. 2019. High-level production of 4-hydroxyvalerate from levulinic acid via whole-cell biotransformation decoupled from cell metabolism. J. Agric. Food Chem. 67: 10678-10684.   DOI
28 Steinbuchel A, Debzi E-M, Marchessault RH, Timm A. 1993. Synthesis and production of poly (3-hydroxyvaleric acid) homopolyester by Chromobacterium violaceum. Appl. Microbiol. Biotechnol. 39: 443-449.   DOI
29 Tripathi L, Wu L-P, Dechuan M, Chen J, Wu Q, Chen G-Q. 2013. Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour. Technol. 142: 225-231.   DOI
30 Reinecke F, Steinbuchel A. 2009. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. Microb. Physiol. 16: 91-108.   DOI
31 Schmack G, Gorenflo V, Steinbuchel A. 1998. Biotechnological production and characterization of polyesters containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules 31: 644-649.   DOI
32 Lee W-H, Loo C-Y, Nomura CT, Sudesh K. 2008. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour. Technol. 99: 6844-6851.   DOI
33 Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, et al. 2000. Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycl. 28: 227-239.   DOI
34 Kidwell J, Valentin HE, Dennis D. 1995. Regulated expression of the Alcaligenes eutrophus pha biosynthesis genes in Escherichia coli. Appl. Environ. Microbiol. 61: 1391-1398.   DOI
35 Reis AC, Salis HM. 2020. An automated model test system for systematic development and improvement of gene expression models. ACS Synth. Biol. 9: 3145-3156.   DOI
36 Durfee T, Nelson R, Baldwin S, Plunkett G, Burland V, Mau B, et al. 2008. The complete genome sequence of Escherichia coli DH10b: insights into the biology of a laboratory workhorse. J. Bacteriol. 190: 2597-2606.   DOI
37 Lutke-Eversloh T, Steinbuchel A. 2004. Microbial polythioesters. Macromol. Biosci. 4: 165-174.   DOI
38 Sheu D-S, Chen Y-LL, Jhuang W-J, Chen H-Y, Jane W-N. 2018. Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. L7L from levulinate as sole carbon source. Int. J. Biol. Macromol. 118: 1558-1564.   DOI
39 Ren Q, Sierro N, Kellerhals M, Kessler B, Witholt B. 2000. Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains. Appl. Environ. Microbiol. 66: 1311-1320.   DOI
40 Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, et al. 2011. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J. Biol. Eng. 5: 12.   DOI
41 Gorenflo V, Schmack G, Vogel R, Steinbuchel A. 2001. Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromolecules 2: 45-57.   DOI
42 Wang Q, Yu H, Xia Y, Kang Z, Qi Q. 2009. Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb. Cell Fact. 8: 1-9.   DOI