Browse > Article
http://dx.doi.org/10.4014/jmb.1612.12031

Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12  

Kang, Du-Kyeong (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Cho-Ryong (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Sun Hee (Department of Microbiology and Molecular Biology, Chungnam National Univercity)
Bae, Jung-Hoon (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
Rhee, Young Ha (Department of Microbiology and Molecular Biology, Chungnam National Univercity)
Sung, Bong Hyun (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Sohn, Jung-Hoon (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.5, 2017 , pp. 990-994 More about this Journal
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of PHAs from crude sludge palm oil (SPO) as an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.
Keywords
Sludge palm oil; waste utilization; PHA; Pseudomonas; bioplastic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gumel AM, Annuar MS, Heidelberg T. 2012. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent. PLoS One 7: e45214.   DOI
2 Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V. 2014. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8: 791-808.   DOI
3 Chen YJ, Huang YC, Lee CY. 2014. Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J. Biosci. Bioeng. 118: 145-152.   DOI
4 Choi D, Chipman DC, Bents SC, Brown RC. 2010. A technoeconomic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 160: 1032-1046.   DOI
5 Koller M, Marsalek L, de Sousa Dias MM, Braunegg G. 2016. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N. Biotechnol. 37: 24-38.
6 Lee SH, Kim JH, Mishra D, Ni YY, Rhee YH. 2011. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 102: 6159-6166.   DOI
7 Song JH, Jeon CO, Choi MH, Yoon SC, Park W. 2008. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J. Microbiol. Biotechnol. 18: 1408-1415.
8 Singh AK, Mallick N. 2009. Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA copolymer by Pseudomonas aeruginosa MTCC 7925. J. Ind. Microbiol. Biotechnol. 36: 347-354.   DOI
9 Ji CM, Eong PP, Ti TB, Seng CE, Ling CK. 2013. Biogas from palm oil mill effluent (POME): opportunities and challenges from Malaysia's perspective. Renew. Sustain. Energy Rev. 26: 717-726.   DOI
10 Kellerhals MB, Kessler B, Tchouboukov A, Brandl H, Witholt B. 2000. Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33: 4690-4698.   DOI
11 Wan Nawawi WM, Jamal P, Alam MZ. 2010. Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour. Technol. 101: 9241-9247.   DOI
12 Chen GQ, Hajnal I, Wu H, Lv L, Ye J. 2015. Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol. 33: 565-574.   DOI
13 Liu Q, Luo G, Zhou XR, Chen GQ. 2011. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 13: 11-17.   DOI
14 Abdullah N, Sulaiman F. 2013. The oil palm wastes in Malaysia, pp. 75-100. In Matovic MD (ed.). Biomass Now - Sustainable Growth and Use. InTech, Croatia, EU.
15 Hayyan A, Alam MZ, Mirghani ME, Kabbashi NA, Hakimi NI, Siran YM, et al. 2010. Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresour. Technol. 101: 7804-7811.   DOI
16 Kim DY, Kim YB, Rhee YH. 2000. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28: 23-29.   DOI
17 Alias Z, Tan IK. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresour. Technol. 96: 1229-1234.   DOI
18 Ciesielski S, Przybylek G. 2014. Volatile fatty acids influence on the structure of microbial communities producing PHAs. Braz. J. Microbiol. 45: 395-402.   DOI
19 Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ. 2014. Engineering the diversity of polyesters. Curr. Opin. Biotechnol. 29: 24-33.   DOI
20 Park SJ, Lee SY. 2004. New FadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates in FadB mutant Escherichia coli. Biotechnol. Bioeng. 86: 681-686.   DOI
21 Du C, Sabirova J, Soetaert W, Lin SKC. 2012. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 6: 14-25.
22 Gamal RF, Abdelhady HM, Khodair TA, El-Tayeb TS, Hassan EA, Aboutaleb KA. 2013. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Braz. J. Microbiol. 44: 539-549.   DOI
23 Wang HH, Zhou XR, Liu Q, Chen GQ. 2011. Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl. Microbiol. Biotechnol. 89: 1497-1507.   DOI
24 Mittendorf V, Robertson EJ, Leech RM, Kruger N, Steinbuchel A, Poirier Y. 1998. Synthesis of medium-chainlength polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid beta-oxidation. Proc. Natl. Acad. Sci. USA 95: 13397-13402.   DOI
25 Ward PG, O'Connor KE. 2005. Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int. J. Biol. Macromol. 35: 127-133.   DOI
26 Borrero-de Acuna JM, Bielecka A, Haussler S, Schobert M, Jahn M, Wittmann C, et al. 2014. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb. Cell Fact. 13: 88.   DOI
27 Hassan MA, Yee L, Yee P, Ariffin H, Raha AR, Shirai Y, et al. 2013. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenergy 50: 1-9.   DOI