Browse > Article
http://dx.doi.org/10.4014/jmb.0909.09038

Cultivation-Dependent and -Independent Characterization of Microbial Community Producing Polyhydroxyalkanoates from Raw Glycerol  

Ciesielski, Slawomir (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Pokoj, Tomasz (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Klimiuk, Ewa (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.5, 2010 , pp. 853-861 More about this Journal
Abstract
High substrate costs decrease the profitability of polyhydroxyalkanoates (PHAs) production, and thus low-cost carbon substrates coming from agricultural and industrial residuals are tested for the production of these biopolymers. Among them, crude glycerol, formed as a by-product during biodiesel production, seems to be the most promising source of carbon. The object of this study was to characterize the mixed population responsible for the conversion of crude glycerol into PHAs by cultivation-dependent and -independent methods. Enrichment of the microbial community was monitored by applying the Ribosomal Intergenic Spacer Analysis (RISA), and the identification of community members was based on 16S rRNA gene sequencing of cultivable species. Molecular analysis revealed that mixed populations consisted of microorganisms affiliated with four bacterial lineages: ${\alpha}$, ${\gamma}$-Proteobacteria, Actinobacteria, and Bacteroides. Among these, three Pseudomonas strains and Rhodobacter sp. possessed genes coding for polyhydroxyalkanoates synthase. Comparative analysis revealed that most of the microorganisms detected by direct molecular analysis were obtained by the traditional culturing method.
Keywords
Glycerol; microbial communities; polyhydroxyalkanoates; ribosomal intergenic spacer;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Liu, Q.-M., L. N. Ten, H.-S. Yu, F.-X. Jin, W.-T. Im, and S.-T. Lee. 2008. Emticicia ginsengisoli sp. nov., a species of the family 'Flexibacteraceae' isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 58: 1100-1105.   DOI   ScienceOn
2 Schippers, A., K. Bosecker, C. Spröer, and P. Schumann. 2005. Microbacterium oleovorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Grampositive bacteria. Int. J. Syst. Evol. Microbiol. 55: 655-660.   DOI   ScienceOn
3 Solaiman, D. K. Y., R. D. Ashby, and T. A. Foglia. 2000. Rapid identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol.Biotechnol. 53: 690-694.   DOI   ScienceOn
4 Yazdani, S. S. and R. Gonzalez. 2007. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18: 213-219.   DOI   ScienceOn
5 Stackebrandt, E. and B. M. Goebel. 1994. A place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.   DOI   ScienceOn
6 Steinbuchel, A. and H. G. Schlegel. 1991. Physiology and molecular genetics of poly ($\beta$-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol. Microbiol. 5: 535-542.   DOI   ScienceOn
7 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI   ScienceOn
8 Saha, P. and T. Chakrabarti. 2006. Emticicia oligotrophica gen. nov., sp. nov., a new member of the family 'Flexibacteraceae', phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol. 56: 991-995.   DOI   ScienceOn
9 Serafim, L. S., P. C. Lemos, R. Oliveira, and M. A. M. Reis. 2004. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol. Bioeng. 87: 145-160.   DOI   ScienceOn
10 Sanz, J. L. and T. Köchling. 2007. Molecular biology techniques used in wastewater treatment: An overview. Process Biochem. 42: 119-133.   DOI   ScienceOn
11 Serafim, L. S., P. C. Lemos, M. G. E. Albuquerque, and M. A. M. Reis. 2008. Strategies for PHA production by mixed cultures and renewable waste materials. Appl. Microbiol. Biotechnol. 81: 615-628.   DOI   ScienceOn
12 Shannon, C. E. and W. Weaver. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
13 Romo, D. M. R., M. V. Grosso, N. C. M. Solano, and D. M. Castano. 2007. A most effective method for selecting a broad range of short and medium-chain-length polyhydroxyalkanoates producing microorganisms. Electron. J. Biotechnol. 10: 348-357.
14 Pachauri, N. and B. He. 2006. Value added utilization of crude glycerol from biodiesel production: A survey of current research activities. ASABE Meeting Presentation.
15 Rehm, B. H. A. and A. Steinbüchel. 2003. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromolec. 25: 3-19.
16 Reis, M. A. M., L. S. Serafim, P. C. Lemos, A. M. Ramos, F. R. Aguiar, and M. C. M. van Loosdrecht. 2003. Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst. Eng. 25: 377-385.   DOI   ScienceOn
17 Kleerebezem, R. and M. C. M. van Loosdrecht. 2007. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18: 207-212.   DOI   ScienceOn
18 Gurtler, V. and V. A. Stanisich. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16.   DOI   ScienceOn
19 Kadouri, D., E. Jurkevitch, Y. Okon, and S. Castro-Sowinski. 2005. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 31: 55-67.   DOI   ScienceOn
20 Kisand, V. and J. Wikner. 2003. Combining culture-dependent and -independent methodologies for estimation of richness of estuarine bacterioplankton consuming river in dissolved organic matter. Appl. Environ. Microbiol. 69: 3607-3616.   DOI   ScienceOn
21 Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17: 1244-1245.   DOI   ScienceOn
22 Miskin, I. P., P. Farrimond, and I. M. Head. 1999. Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145: 1977-1987.   DOI   ScienceOn
23 Comeau, Y., K. J. Hall, and W. K. Oldham. 1988. Determination of poly-$\beta$-hydroxybutyrate and poly-$\beta$-hydroxyvalerate in activated sludge by gas-liquid chromatography. Appl. Environ. Microbiol. 54: 2325-2327.
24 Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu. 2006. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759.   DOI   ScienceOn
25 Ciesielski, S., E. Klimiuk, J. Mo ejko, E. Nowakowska, and T. Pokoj. 2009. Changes in microbial community structures during adaptation towards polyhydroxyalkanoates production. Pol. J. Microbiol. 58: 131-139.
26 Cilia, V., B. Lafay, and R. Christen. 1996. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol. Biol. Evol. 13: 451-461.   DOI   ScienceOn
27 Dahllof, I. 2002. Molecular community analysis of microbial diversity. Curr. Opin. Biotechnol. 13: 213-217.   DOI   ScienceOn
28 da Silva, G. P., M. Mack, and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39.   DOI   ScienceOn
29 Dias, J. M. L., P. C. Lemos, L. S. Serafim, C. Oliveira, M. Eiroa, M. G. E. Albuquerque, A. M. Ramos, R. Oliveira, and M. A. M. Reis. 2006. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: From the substrate to the final product. Macromol. Biosci. 6: 885-906.   DOI   ScienceOn
30 Dolzani, L., E. Tonin, C. Lagatolla, L. Prandin, and C. Monti- Bragadin. 1996. Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. J. Clin. Microbiol. 33: 1108-1113.
31 Bitton, G. 2005. Wastewater Microbiology, 2nd Ed. Wiley-Liss, New York.
32 Fisher, M. M. and E. W. Triplett. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65: 4630-4636.
33 Garcia-Martinez, J., S. G. Acinas, A. I. Anton, and F. Rodriguez- Valera. 1999. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J. Microbiol. Methods 36: 55-64.   DOI   ScienceOn
34 Ashby, R. D., D. K. Y. Solaiman, and T. A. Foglia. 2004. Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 12: 105-112.   DOI
35 Braunegg, G., B. Sonnleitner, and R. M. Lafferty. 1978. A rapid gas chromatographic method for the determination of poly-$\beta$- hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. 6: 29-37.   DOI
36 Brenner, K., L. You, and F. H. Arnold. 2008. Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 26: 483-489.   DOI   ScienceOn
37 Andrade, J. C. and I. Vasconcelos. 2003. Continuous cultures of Clostridium acetobutylicum: Culture stability and low-grade glycerol utilizations. Biotechnol. Lett. 25: 121-125.   DOI   ScienceOn
38 Ciesielski, S., A. Cydzik-Kwiatkowska, T. Pokoj, and E. Klimiuk. 2006. Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199.   DOI   ScienceOn
39 Anderson, A. J. and E. A. Dawes. 1990. Occurence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.