Browse > Article
http://dx.doi.org/10.4014/jmb.0906.06037

Biological Treatment of Two-Phase Olive Mill Wastewater (TPOMW, alpeorujo): Polyhydroxyalkanoates (PHAs) Production by Azotobacter Strains  

Cerrone, Federico (Group of Environmental Microbiology, Institute of Water Research, University of Granada)
Sanchez-Peinado, Maria Del Mar (Group of Environmental Microbiology, Institute of Water Research, University of Granada)
Juarez-Jimenez, Belen (Group of Environmental Microbiology, Institute of Water Research, University of Granada)
Gonzalez-Lopez, Jesus (Group of Environmental Microbiology, Institute of Water Research, University of Granada)
Pozo, Clementina (Group of Environmental Microbiology, Institute of Water Research, University of Granada)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 594-601 More about this Journal
Abstract
Azotobacter chroococcum H23 (CECT 4435), Azotobacter vinelandii UWD, and Azotobacter vinelandii (ATCC 12837), members of the family Pseudomonadaceae, were used to evaluate their capacity to grow and accumulate polyhydroxyalkanoates (PHAs) using two-phase olive mill wastewater (TPOMW, alpeorujo) diluted at different concentrations as the sole carbon source. The PHAs amounts (g/l) increased clearly when the TPOMW samples were previously digested under anaerobic conditions. The MNR analysis demonstrated that the bacterial strains formed only homopolymers containing $\beta$-hydroxybutyrate, either when grown in diluted TPOMW medium or diluted anaerobically digested TPOMW medium. COD values of the diluted anaerobically digested waste were measured before and after the aerobic PHA-storing phase, and a clear reduction (72%) was recorded after 72 h of incubation. The results obtained in this study suggest the perspectives for using these bacterial strains to produce PHAs from TPOMW, and in parallel, contribute efficiently to the bioremediation of this waste. This fact seems essential if bioplastics are to become competitive products.
Keywords
Two-phase olive mill wastewater (TPOMW); polyhydroxyalkanoates (PHAs); Azotobacter spp.; chemical oxygen demand (COD);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Aldor, I. and J. Keasling. 2003. Process design for microbial plastic factories: Metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotech. 14: 475-483.   DOI   ScienceOn
2 Borja, R., B. Rincon, F. Raposo, J. Alba, and A. Martin. 2003. Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste. Biochem. Eng. J. 15: 139-145.   DOI   ScienceOn
3 Lopez, M. J. and A. Ramos-Cormenzana. 1996. Xanthan production from olive-mill wastewaters. Int. Biodeter. Biodegrad. 38: 263-270.   DOI   ScienceOn
4 Martinez-Toledo, M. V., J. Gonzalez-Lopez, T. de la Rubia, and A. Ramos-Cormenzana. 1985. Isolation and characterization of Azotobacter chroococcum from the roots of Zea mays. FEMS Microbiol. Ecol. 31: 197-203.   DOI   ScienceOn
5 Pal, S., A. Manna, and A. K. Paul. 1998. Nutritional and cultural conditions for production of poly-3-hydroxybutyric acid by Azotobacter chroococcum. Folia Microbiol. 43: 177-181.   DOI   ScienceOn
6 Patel, M., D. J. Gapes, R. H. Newman, and P. H. Dare. 2009. Physico-chemical properties of polyhydroxyalkanoate produced by mixed-culture nitrogen-fixing bacteria. Appl. Microbiol. Biotechnol. 82: 545-555.   DOI   ScienceOn
7 Pozo, C., M. V. Martinez-Toledo, B. Rodelas, and J. Gonzalez-Lopez. 2002. Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon sources. J. Biotechnol. 97: 125-131.   DOI   ScienceOn
8 Rincon, B., R. Borja, J. M. Gonzalez, M. C. Portillo, and C. Saiz-Jimenez. 2008. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of twophase olive mill solid residue. Biochem. Eng. J. 40: 253-261.   DOI   ScienceOn
9 Scioli, C. and L. Vollaro. 1997. The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Res. 31: 2520-2524.   DOI   ScienceOn
10 Thakor, N., U. Trivedi, and K. C. Patel. 2005. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosterone during cultivation on vegetable oils. Bioresource Technol. 96: 1843-1850.   DOI   ScienceOn
11 Wilson, P. W. and S. C. Knight. 1952. Experiments in Bacterial-Physiology. Burges Publishing Co., Minneapolis.
12 Yu, J. 2001. Production of PHA from starchy wastewater via organic acids. J. Biotechnol. 86: 105-112.   DOI   ScienceOn
13 Gonzalez-Lopez, J., C. Pozo, M. V. Martinez-Toledo, B. Rodelas, and V. Salmeron. 1996. Production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in wastewater from olive oil mills (alpechin). Int. Biodeter. Biodegred. 38: 271-276.   DOI   ScienceOn
14 Reddy, C. S., R. Ghai, and V. C. Rashmi Khalia. 2003. Polyhydroxyalkanoates: An overview. Bioresource Technol. 87: 137-146.   DOI   ScienceOn
15 Fiorelli, F., L. Passetti, and E. Galli. 1996. Fertility-promoting metabolites produced by Azotobacter vinelandii grown on olivemill wastewaters. Int. Biodeter. Biodegrad. 34: 165-167.
16 Choi, J. and S. Y. Lee. 1997. Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng. 17: 335-342.   DOI   ScienceOn
17 Poirier, Y., C. Nawrath, and C. Somerville. 1995. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Rev. Biotechnol. 13: 142-150.   DOI   ScienceOn
18 Thompson, R. B. and R. Nogales. 1999. Nitrogen and carbon mineralization in soil of vermi-composted and unprocessed dry olive cake ("orujo seco") produced from two-stage centrifugation for olive oil extraction. J. Environ. Sci. Health B 34: 917-928.   DOI
19 Alias, Z. and I. K. Tan. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresource Technol. 96: 1229-1234.   DOI   ScienceOn
20 Dionisi, D., M. Majone, V. Papa, and M. Beccari. 2004. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol. Bioeng. 85: 569-579.   DOI   ScienceOn
21 Beccari, M., F. Bonemazzi, M. Majone, and C. Riccardi. 1996. Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents Water Res. 30: 183-189.   DOI   ScienceOn
22 Kissi, M., M. Mountadar, O. Assobhei, E. Gargiulo, G. Palmieri, and P. Giardina. 2001. Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Appl. Microbiol. Biotechnol. 57: 221-226.   DOI   ScienceOn
23 Yan, Y., Q. Wu, and R. Zhang. 2000. Dynamic accumulation and degradation of poly(3-hydroxyalkanoate)s in living cells of Azotobacter vinelandii UWD characterized by 13C NMR. FEMS Microbiol. Lett. 193: 269-273.   DOI   ScienceOn
24 Jones, C. E., P. J. Murphy, and N. J. Russell. 2000. Diversity and osmoregulatory responses of bacteria isolated from twophase olive oil extraction waste products. World J. Microbiol. Biotechnol. 16: 555-561.   DOI   ScienceOn
25 Steinbuchel, A. and B. Fuchtenbusch. 1998. Bacteria and other biological systems for polyester production. TIBTECH, 16: 419-427.   DOI   ScienceOn
26 Byrom, D. 1992. Production of poly-$\beta$-hydroxybutyrate: Poly-$\beta$-hydroxyvalerate copolymers. FEMS Microbiol. Rev. 103: 247-250.
27 Dionisi, D., G. Carucci, M. Petrangeli Papini, C. Riccardi, M. Majone, and F. Carrasco. 2005. Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res. 39: 2076-2084.   DOI   ScienceOn
28 De Villiers, A., F. Lynen, A. Crouch, and P. Sandra. 2004. Development of a solid-phase extraction procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine. Chromatographia 59: 403-409.
29 Arjona, R., P. Ollero, and F. Vidal. 2005. Automation of an olive waste industrial rotary dryer. J. Food Eng. 68: 239-247.   DOI   ScienceOn
30 Hahn, S. K., Y. K. Chang, and S. Y. Lee. 1995. Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl. Environ. Microbiol. 61: 34-39.
31 Cayuela, M. L., M. P. Bernal, and A. Roig. 2004. Composting olive mill wastes and sheep manure for orchard use. Compost Sci. Utiliz. 12: 130-136.
32 Oelze, J. 2000. Respiratory protection of nitrogenase in Azotobacter species: Is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol. Rev. 24: 321-333.   DOI   ScienceOn
33 Tsuge, T. 2002. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 94: 579-584.
34 Fezzani, B. and R. Ben Cheikh. 2008. Optimisation of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a batch digester. Desalination 228: 159-167.   DOI   ScienceOn
35 Page, W. J. and O. Knosp. 1989. Hyperproduction of poly-3-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 5: 1334-1339.
36 Fukui, T. and Y. Doi. 1998. Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl. Microbiol. Biotechnol. 49: 333-336.   DOI   ScienceOn
37 Martinez-Toledo, M. V., J. Gonzalez-Lopez, B. Rodelas, C. Pozo, and V. Salmeron. 1995. Production of poly-$\beta$-hydroxybutyrate by Azotobacter chroococcum H23 in chemically-defined medium and alpechin medium. J. Appl. Bacteriol. 78: 413-418.   DOI
38 Page, W. J., J. Manchak, and B. Rudy. 1992. Formation of poly(hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 58: 2866-2873.
39 Chen, G. Q., G. Zhang, S. J. Park, and S. Lee. 2001. Industrial production of poly (hydroxyl-butyrate-co-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 57: 50-55.   DOI   ScienceOn
40 Martinez, D., M. J. Cugat, F. Borrull, and M. Calull. 2000. Solidphase extraction coupling to capillary electrophoresis with emphasis on environmental analysis - Review. J. Chromatogr. A 902: 65-89.   DOI
41 Page, W. J., N. Bhanthumnarvim, J. Manchak, and M. Ruman. 1997. Production of poly-(beta-hydroxybutyrate-beta-hydroxyvalerate) copolymer from sugars by Azotobacter salinestris. Appl. Microbiol. Biotechnol. 48: 88-93.   DOI   ScienceOn
42 Sook, O. J., M. W. Choi, and S. C. Yoon. 2005. In vivo 13CNMR spectroscopic study of polyhydroxyalkanoic acid degradation kinetics in bacteria. J. Microbiol. Biotechnol. 15: 1330-1336.