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Polyhydroxyalkanoates (PHAs) are biobased polyesters

that accumulate in numerous bacteria as an intracellular

carbon compound. They are generally classified into two

groups: short-chain-length (SCL)-PHAs and medium-

chain-length (MCL)-PHAs [1]. SCL-PHAs are stiff and

exhibit high tolerance for heat, whereas MCL-PHAs are

elastomeric polymers. PHAs are eco-friendly bio plastics

that are attractive in terms of biocompatibility [2]. Moreover,

PHAs are highly similar to widely used synthetic plastics

and can therefore be substituted for petrochemical-based

plastics. For these reasons, PHAs have been used

commercially in many countries as packaging, storage

materials, biofuels, and particularly in biomedical

applications [1, 3, 4]. However, impediments exist to the

widespread use of PHAs, the largest of which is the high

cost of commercial PHA production (2–4 $/kg; depends on

substrates, products, process, and reaction scale) [5, 6].

Carbon sources account for approximately 30% of the total

operating expenses of PHA production [7]. To solve this

problem, inexpensive carbon resources, including renewable

wastes such as waste frying oil, olive oil mill waste,

bagasse, rice bran, and wheat bran, have been investigated

as potential raw materials for PHA production [8, 9]. In

addition to these inexpensive carbon resources, low-quality

sludge palm oil (SPO) from palm oil mill effluent (POME)

represents an attractive potential substrate owing to the

continuous increase in palm oil production, which has

generated an abundance of SPO [10]. The average annual

production of SPO from palm oil processing is 1.5 million

tons [11]. In addition, because SPO is the waste product of
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Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use

in diverse applications is prohibited by high production costs. To reduce these costs, the

conversion by Pseudomonas strains of PHAs from crude sludge palm oil (SPO) as an

inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce

the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The

MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel

permeation chromatography, and differential scanning calorimetry. These findings may

contribute to more widespread use of PHAs by reducing PHA production costs. 

Keywords: Sludge palm oil, waste utilization, PHA, Pseudomonas, bioplastic



PHA Production from SPO by P. putida  991

May 2017⎪Vol. 27⎪No. 5

the palm oil production process, it can be acquired at little

to no cost. Therefore, SPO, whose major components are

fatty acids, is a promising alternative feedstock for bacteria,

which take up fatty acids well. Additionally, long-chain

fatty acids are suitable to make MCL-PHAs [12]; thus, SPO

is suitable for use as a substrate. Furthermore, the

conversion of SPO to biopolyesters would solve the

problem of disposing of waste SPO, offering a more eco-

friendly alternative [13]. Pseudomonas bacteria possess a

beta-oxidation pathway, in which the fatty acids are

degraded to remove a C2 acetyl-CoA by FadABDE for each

cycle, and can thus utilize fatty acids metabolically [14, 15].

Indeed, some Pseudomonas strains have been isolated from

POME [2]. In this study, we assessed the abilities of 10

Pseudomonas strains to convert SPO to PHAs and characterized

the resulting PHAs.

Low-quality crude SPO with an acid value of approximately

120 was obtained from Teck Guan Holdins SDN BHD

(Malaysia). The SPO contained approximately 60% free

fatty acids and was a good feedstock for the production of

PHAs. Because the fatty acid composition of the substrate

SPO is important to maintain the quality of the PHAs in

PHA production, it was analyzed by gas chromatography.

As shown in Table 1, palmitic acid (C16:0) and oleic acid

(C18:1) accounted for the majority of fatty acids in the SPO,

whereas stearic acid (C18:0), linoleic acid (C18:2), and other

fatty acids were less prevalent. This fatty acid composition

is similar to that of SPO previously analyzed by other

research groups [16].

To determine which Pseudomonas strain produced the

highest PHA from SPO, 10 strains were cultured in 50 ml of

E* medium (0.5 g of NH4Cl, 5.8 g of K2HPO4, 3.7 g of KH2PO4,

0.37 g of MgSO4, and 3 ml of trace element solution per

liter, pH 7.0) containing 10 g/l SPO as the sole carbon

source, at 30°C and 200 rpm for 48 h [7]. To analyze PHAs

produced from SPO by Pseudomonas strains, impurities in

the harvested cells were removed and the cells were then

lyophilized by speed vacuum concentration. Next, 20 mg of

the dried bacterial biomass was completely dissolved in

0.5 ml of chloroform by vortexing. To methylate the PHAs,

0.5 ml of a solution containing 15% (v/v) H2SO4, 85% (v/v)

methanol, and 0.2% benzoic acid (as an internal standard)

was added to each chloroform solution. The solutions

were vortexed and kept in a water bath at 80°C for 3 h.

Subsequently, 0.5 ml of distilled water was added, and

the solutions were vortexed vigorously. The PHA-rich

chloroform was recovered for analysis [17-19]. The PHA

composition was analyzed by gas-chromatography/mass

spectrometry apparatus (Agilent 7890B, USA) equipped

with an HP-5 capillary column (30 m × 0.320 mm) with

0.25 μm film [17]. The compositions of analyzed PHAs

were determined based on the methyl-3-hydroxyalkanoates

in the Agilent database.

When SPO was used as the sole carbon source, P. putida

exhibited the highest dry cell weight (DCW). The four strains

showing high MCL-PHA production were Pseudomonas

moorei, Pseudomonas mohnii, Pseudomonas putida KT2440,

and Pseudomonas putida S12. MCL-PHA accounted for

20.2%, 21.6%, 20.8%, and 24.9% of the DCW in these

strains, respectively (Table 2). It was reported that MCL-

PHA productivity is dependent on PHA precursors from

the fatty acid β-oxidation metabolism [20]. Therefore, the

activity of the enzymes of β-oxidation in Pseudomonas

species may affect the fatty acid utilization for PHA

synthesis [21, 22]. As shown in Fig. 1, MCL-PHAs from the

four strains were composed of several types of monomers

ranging from C6 to C14, with few differences in monomer

Table 1. Fatty acid composition of sludge palm oil (SPO), as

analyzed by gas chromatography (GC).

Fatty acids Structure Composition (wt %)

Palmitic acid C16:0 45.9 ± 1.90

Stearic acid C18:0 3.35 ± 0.41

Oleic acid C18:1 38.1 ± 1.08

Linoleic acid C18:2   9.1 ± 0.13

Others -   3.6 ± 0.90

Table 2. Amounts of medium-chain-length polyhydroxyalkanoates

(MCL-PHAs) produced by some Pseudomonas strains.

Strains DCW (g/l)a
MCL-PHAs

(% DCW)
Sourceb

P. fluorescens 0.65 ± 0.03   3.14 ± 0.06 KCTC 12453

P. chlororaphis 0.67 ± 0.08   5.02 ± 1.67 KCTC 12349

P. putida 1.41 ± 0.15 15.73 ± 2.17 KCTC 1452

P. aeruginosa 0.99 ± 0.07   3.94 ± 0.96 KCTC 1637

Pseudomonas sp. 0.43 ± 0.01   2.65 ± 0.33 KCTC 1640

P. gessardii 0.65 ± 0.11   5.13 ± 0.93 DSMZ 17152

P. moorei 0.90 ± 0.08 20.19 ± 4.87 DSMZ 12647

P. mohnii 1.05 ± 0.31 21.55 ± 4.53 DSMZ 18327

P. putida KT2440 1.16 ± 0.20 20.80 ± 2.73 Victor de Lorenzo 

(Spain)

P. putida S12 1.01 ± 0.16 24.87 ± 3.90 Victor de Lorenzo 

(Spain)

aDCW, dry cell weight. 
bKCTC, Korean Collection for Type Cultures; DSMZ, German Collection of

Microorganisms and Cell Cultures. 
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rate among the strains. In total, there were six types of

monomers in the produced PHAs: 3-hydroxyhexanoic acid

(3-HHx), 3-hydroxyoctanoic acid (3-HO), 3-hydroxydecanoic

acid (3-HD), 3-hydroxydodecanoic acid (3-HDD), 3-

hydroxytetradecanoic acid (3-HTD), and 3-hydroxy-

tetradecaenoic acid (3-HTD(=)). 

PHA properties are determined by monomer units, with

PHA containing medium-carbon-chain monomers being

more elastic, flexible, and sticky than PHA composed of

short-carbon-chain monomers [23]. We expect that the

PHAs produced by Pseudomonas from SPO are elastic

because 3-HO (C8), 3-HD (C10), and 3-HDD (C12) are the

major components. Although P. putida KT2440 has been

previously reported to produce PHA, this is the first report

of its use to produce PHA from SPO. In addition, this is the

first report of PHA production by P. moorei and P. mohnii

from fatty acids. Among the four best PHA producers,

P. putida S12 exhibited the highest efficiency in producing

MCL-PHA (Table 2). We therefore further assessed the

characteristics of the MCL-PHA produced by P. putida S12

from SPO. 

Fed-batch fermentation was conducted in a 5 L reactor

(KoBioTech, Korea) with a working volume of 2 L. In brief,

cells grown in 50 ml of LB medium were harvested and

transferred to a fermenter containing E* medium and 10 g/l

SPO. Growth conditions were maintained at 30°C and

200 rpm without pH control. After 24 h, 5 g/l SPO was fed

to the cells, which were then cultured for an additional

24 h. The fermentation of P. putida S12 resulted in the

extraction of 3.7 g/l PHA from 15 g/l SPO (yield of

approximately 41%), and this PHA was then subjected to

gel permeation chromatography and differential scanning

calorimetry (DSC) analysis at the Korea Polymer Testing &

Research Institute (KOPTRI, Korea) (Table 3). The weight

average molecular weight (Mw) and number average

molecular weight (Mn) of the PHAs were found to be

approximately 106 kDa and 45 kDa, respectively, and the

polydispersity index (PDI) was 2.33. The monodisperse

products were found to have a PDI closer to 1 in other

studies [1], indicating that the PHA produced by P. putida

S12 has a broad molecular weight distribution. Diverse

fatty acids in SPO were catabolized to various PHA

precursors through the β-oxidation pathway, resulting in

the production of different length of PHAs and distinctive

characteristic PHA products. DSC analysis elucidated the

thermal properties of the produced PHA; the glass

transition temperature (Tg) was found to be -42°C and the

melting temperature (Tm) was 35°C. 

The results of this study demonstrate that low-quality

SPO can be used as an environmentally friendly and

inexpensive resource for the production of MCL-PHAs by

P. putida. Moreover, the PHA produced from SPO exhibits

Fig. 1. Monomeric composition of medium-chain-length

polyhydroxyalkanoates (PHAs) (mol%) produced by Pseudomonas

strains during growth on sludge palm oil (A) and gas

chromatography/mass spectrometry chromatogram of PHAs

produced from P. putida S12 (B). 

3-HHx, 3-hydroxyhexanoic acid; 3-HO, 3-hydroxyoctanoic acid; 3-HD,

3-hydroxydecanoic acid; 3-HDD, 3-hydroxydodecanoic acid; 3-HTD,

3-hydroxytetradecanoic acid; 3-HTD(=), 3-hydroxytetradecaenoic acid.

Table 3. Properties of medium-chain-length polyhydroxyalkanoates produced by P. putida S12 based on gel permeation

chromatography and differential scanning calorimetry analysis.

Strain Mn (Da) Mw (Da) PDI Tg (°C) Tm (°C)

P. putida S12 45,354 105,792 2.33 - 41.75 34.95

Mn, number average molecular weight; Mw, weight average molecular weight; PDI, polydispersity index; Tg, glass transition temperature; Tm, melting temperature.
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properties that are attractive in a biopolymer. Although the

production yield of PHAs produced from SPO using

Pseudomonas was similar to that of PHAs produced from

fatty acids in a previous study [24], and despite the

promising results presented here, further improvement is

needed for economical production of PHA. In the future,

the production yield should be increased by metabolic flux

engineering [25], utilization of other PHA producers such

as Cupriavidus necator, Rhodobacter sphaeroides, and Comamonas

sp. [26], and process development such as two-stage batch

or high-cell-density fed-batch culture [27]. Production of

PHAs from SPO may contribute to a low-cost method of

bioplastic production and may create opportunities for

new industrial applications of these eco-friendly products.
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