Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates |
Kim, Do-Young
(Department of Microbiology, Chungnam National University)
Kim, Hyung-Woo (Department of Microbiology, Chungnam National University) Chung, Moon-Gyu (Department of Microbiology, Chungnam National University) Rhee, Young-Ha (Department of Microbiology, Chungnam National University) |
1 | Ashby, R.D., A.M. Cromwick, and T.A. Foglia. 1998. Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow. Int. J. Biol. Macromol. 23, 61-72 DOI ScienceOn |
2 | Chen, J.Y., T. Liu, Z. Zheng, J.C. Chen, and G.Q. Chen. 2004. Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol. Lett. 234, 231-237 DOI |
3 | Deng, Y., K. Zhao, X.F. Zhang, P. Hu, and J.C. Chen. 2002. Study on the three-dimensional proliferation of rabbit articular cartilage- derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23, 4049-4056 DOI ScienceOn |
4 | Doi, Y. and C. Abe. 1990. Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy- -chloroalkanoates. Macromolecules 23, 3705-3707 DOI |
5 | Elbanna, K., T. Lutke-Eversloh, D. Jendrossek, H. Luftmann, and A. Steinbuchel. 2004. Studies on the biodegradability of polythiester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch. Microbiol. 182, 212-225 PUBMED |
6 | Eroglu, M.S., B. Hazer, T. Ozturk, and T. Caykara. 2005. Hydroxylation of pendant vinyl groups of poly(3-hydroxy undecenoate) in high yield. J. Appl. Polym. Sci. 97, 2132-2139 DOI ScienceOn |
7 | Fritzsche, K., R.W. Lenz, and R.C. Fuller. 1990a. Production of unsaturated polyesters by Pseudomonas oleovorans. Int. J. Biol. Macromol. 12, 85-91 DOI ScienceOn |
8 | Hazer, B., S.I. Demirel, M. Borcakli, M.S. Eroglu, M. Cakmak, and B. Erman. 2001. Free radical crosslinking of unsaturated bacterial polyester obtained from soybean oily acids. Polym. Bull. 46, 389-394 DOI |
9 | Hoffmann, N., A. Steinbuchel, and B.H.A. Rhem. 2000. The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol. Lett. 184, 253-259윁 DOI |
10 | Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 1998. Bacterial poly(3-hydroxyalkanoates) bearing carbon-carbon triple bonds. Macromolecules 31, 4760-4763 DOI ScienceOn |
11 | Kim, H.J., D.Y. Kim, J.S. Nam, K.S. Bae, and Y.H. Rhee. 2003b. Characterization of an extracellular medium-chain-length poly (3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72. Antonie van Leeuwenhoek 83, 183-1895 DOI |
12 | Kim, H.W., C.W. Chung, and Y.H. Rhee. 2005b. UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly (3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. Int. J. Biol. Macromol. 35, 47-538 DOI ScienceOn |
13 | Kim, Y.B. and R.W. Lenz. 2001. Polyesters from microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 51-79 DOI PUBMED |
14 | Mallarde, D., M. Valiere, C. David, M. Menet, and Ph. Guerin. 1998. Hydrolytic degradability of poly(3-hydroxyoctanoate) and of a poly(3-hydroxyoctanoate)/poly(R,S-lactic acid) blend. Polymer 15, 3387-33921 |
15 | Park, W.H., R.W. Lenz, and S. Goodwin. 1998. Epoxidation of bacterial polyesters with unsaturated side chains. II. Rate of epoxidation and polymer properties. J. Polym. Sci. A Polym. Chem. 36, 2381-2387 DOI ScienceOn |
16 | Renard, E., M. Walls, Ph. Guerin, and V. Langlois. 2004. Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym. Degrad. Stab. 85, 779-787 DOI ScienceOn |
17 | Ilter, S., B. Hazer, A.H. Arkin, and R.W. Lenz. 2001. Graft copolymerization of methyl methacrylate onto bacterial polyester containing unsaturated side chains. Macromol. Chem. Phys. 202, 2281-2286 DOI ScienceOn |
18 | Song, J.J. and S.C. Yoon. 1996. Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BM01. Appl. Environ. Microbiol. 62, 536- 544 PUBMED |
19 | Takagi, Y., M. Hashii, A. Maehara, and T. Yamane. 1999. Biosynthesis of polyhydroxyalkanoate with a thiophenoxy side group obtained from Pseudomonas putida. Macromolecules 32, 8315-8318 DOI ScienceOn |
20 | Witholt, B. and B. Kessler. 1999. Perspectives of medium chain length poly(hydroxyalkanoates). Curr. Opin. Biotechnol. 10, 279-285 DOI ScienceOn |
21 | Lim, J.H. 2006. Expression, purification and characterization of Rhodococcus equi P2 MCL-PHA depolymerase in Escherichia coli. MS thesis, Chungnam National University, Korea |
22 | Gagnon, K.D., R.W. Lenz, R.J. Farris, and R.C. Fuller. 1994. Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer 35, 4358-4367 DOI ScienceOn |
23 | Valappil, S.P., A.R. Boccaccini, C. Bucke, and I. Roy. 2007. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie van Leeuwenhoek 91, 1-17 PUBMED |
24 | Kim, S.N., S.C. Shim, D.Y. Kim, Y.H. Rhee, and Y.B. Kim. 2001b. Photochemical crosslinking and enzymatic degradation of poly (3-hydroxyalkanoate)s for micropatterning in photolithography. Macromol. Rapid Commun. 22, 1066-1071 DOI ScienceOn |
25 | Ashby, R.D., T.A. Foglia, D.K.Y. Solaiman, C.K. Liu, A. Nunez, and G. Eggink. 2000. Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int. J. Biol. Macromol. 27, 355-361 DOI ScienceOn |
26 | Klingbeil, B., R.M. Kroppenstedt, and D. Jendrossek. 1996. Taxonomic identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiol. Lett. 142, 215-221 DOI |
27 | Schirmer, A., D. Jendrossek, and H.G. Schlegel. 1993. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59, 1220-1227 DOI |
28 | Hein, H., J.R.J. Paletta, and A. Steinbuchel. 2002 Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases PhaC1 and PhaC2. Appl. Microbiol. Biotechnol. 58, 229-236 DOI |
29 | Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2000a. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28, 23-29 DOI ScienceOn |
30 | Kim, H.W., C.W. Chung, Y.B. Kim, and Y.H. Rhee. 2005c. Preparation and hydrolytic degradation of semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly(lactide-coglycolide). Int. J. Biol. Macromol. 37, 221-226 DOI ScienceOn |
31 | Zinn, M., B. Witholt, and T. Egli. 2001. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Del. Rev. 53, 5-21 DOI ScienceOn |
32 | Kim, D.Y., H.C. Kim, S.Y. Kim, and Y.H. Rhee. 2005a. Molecular characterization of extracellular medium-chain-length poly(3- hydroxyalkanoate) depolymerase genes from Pseudomonas alcaligenes strains. J. Microbiol. 43, 285-294 과학기술학회마을 |
33 | Dufresne, A., L. Reche, R.H. Marchessault, and M. Lacroix. 2001. Gamma-ray crosslinking of poly(3-hydroxyoctanoate-co-undecenoate). Int. J. Biol. Macromol. 29, 73-82 DOI ScienceOn |
34 | Kim, O.Y., R.A. Gross, W.J. Hammer, and R.A. Newmark. 1996a. Microbial synthesis of poly(-hydroxyalkanoates) containing fluorinated side-chain substituents. Macromolecules 29, 4572- 4581 DOI ScienceOn |
35 | Schirmer, A. and D. Jendrossek. 1994. Molecular characterization of the extracellular poly(3-hydroxyoctanoic acid) [P(3HO)] depolymerase gene of Pseudomonas fluorescens GK13 and of its gene product. J. Bacteriol. 176, 7065-7073 |
36 | Steinbuchel, A. and H.E. Valentin. 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128, 219-228 DOI |
37 | Curley, J.M., B. Hazer, R.W. Lenz, and R.C. Fuller. 1996. Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29, 1762-1766 DOI ScienceOn |
38 | Lee, M.Y., W.H. Park, and R.W. Lenz. 2000. Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer 41, 1703-1709 DOI ScienceOn |
39 | Steinbuchel, A. and S. Hein, 2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 81-123 DOI PUBMED |
40 | Chung, C.W., H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2003. Poly (ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int. J. Biol. Macromol. 32, 17-22 DOI ScienceOn |
41 | Doi, Y., S. Kitamura, and H. Abe. 1995. Microbial synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28, 4822-4828 DOI ScienceOn |
42 | Jendrossek, D. 2001. Microbial degradation of polyesters. Adv. Biochem. Eng. Biotechnol. 71, 293-325 DOI PUBMED |
43 | Kim, Y.B., Y.H. Rhee, S.H. Han, G.S. Heo, and J.S. Kim. 1996b. Poly-3-hydroxyalkanoates produced from Pseudomonas oleovorans grown with -phenoxyalkanoates. Macromolecules 29, 3432-3435 DOI ScienceOn |
44 | Park, I.J., Y.H. Rhee, N.Y. Cho, and K.S. Shin. 2006. Cloning and analysis of medium-chain-length poly(3-hydroxyalkanoate) depolymerase gene of Pseudomonas luteola M13-4. J. Microbiol. Biotechnol. 16, 1935-1939 과학기술학회마을 |
45 | Huijberts, G.N.M., G. Eggink, P. de Waard, G.W. Huisman, and B. Witholt. 1992. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58, 536-544 PUBMED |
46 | Tsuge, T., K. Taguchi, S. Taguchi, and Y. Doi. 2003. Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid -oxidation. Int. J. Biol. Macromol. 31, 195-205 DOI ScienceOn |
47 | Bear, M.M., M.A. Leboucher-Durand, V. Langlois, R.W. Lenz, S. Goodwin, and Ph. Guerin. 1997. Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. React. Funct. Polym. 34, 65-77 DOI ScienceOn |
48 | Lenz, R.W., Y.B. Kim, and R.C. Fuller. 1992. Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol. Rev. 103, 207-214 DOI |
49 | Mergaert, J. and J. Swings. 1996. Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J. Ind. Microbiol. 17, 463-469 DOI |
50 | Fritzsche, K., R.W. Lenz, and R.C. Fuller. 1990b. An unusual bacterial polyester with a phenyl pendant group. Macromol. Chem. 191, 1957-1965 DOI |
51 | Qi, Q.S., B.H.A. Rehm, and A. Steinbuchel. 1997. Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol. Lett. 157, 155-162 DOI |
52 | Arkin, A.H., B. Hazer, and M. Borcakli. 2000. Chlorination of poly (3-hydroxyalkanoates) containing unsaturated side chains. Macromolecules 33, 3219-3223 DOI ScienceOn |
53 | Chung, C.W. 2005. Characterization of chemically modified bacterial medium-chain-length poly(3-hydroxyalkanoates) for biomedical applications. Ph. D. thesis, Chungnam National University, Korea |
54 | Kang, H.O., C.W. Chung, H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2001. Cometabolic production of copolyesters consisting of 3- hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie van Leeuwenhoek 80, 185-191 DOI ScienceOn |
55 | Kim, D.Y., J.S. Nam, Y.H. Rhee, and Y.B. Kim. 2003a. Biosynthesis of novel poly(3-hydroxyalkanoates) containing alkoxy groups by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 13, 632-635 과학기술학회마을 |
56 | Kim, Y.B., R.W. Lenz, and R.C. Fuller. 1992. Poly( -hydroxyalkanoates) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25, 1852-1857 DOI |
57 | Ewering, C., T. Lutke-Eversloh, H. Luftmann, and A. Steinbuchel. 2002. Identification of novel sulfur-containing bacterial polyesters: biosynthesis of poly(3-hydroxy-S-propyl--thioalkanoates) containing thioester linkages in the side chains. Microbiology 148, 1397-1406 DOI PUBMED |
58 | Hazer, B. 1996. Poly( -hydroxynonanoate) and polystyrene or poly (methylmethacrylate) graft copolymers: microstructure characteristics and mechanical and thermal behavior. Macromol. Chem. Phys. 197, 431-441 DOI |
59 | Kim, D.Y. and Y.H. Rhee. 2003. Biodegradation of microbial and synthetic polyesters by fungi. Appl. Microbiol. Biotechnol. 61, 300-308 DOI PUBMED |
60 | Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2002a. Cometabolic production of poly(3-hydroxyalkanoates) containing carbon-carbon double and triple bonds by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 12, 518-521 |
61 | Nam, J.S., H.C. Kim, D.Y. Kim, and Y.H. Rhee. 2002. Distribution and diversity of microbial communities relating to biodegradation of medium-chain-length poly(3-hydroxyalkanoates) in soils. In Proceedings of 9th International Symposium on the Genetics of Industrial Microorganisms. Gyeongju, Korea. p192 |
62 | Kim, H.W., C.W. Chung, S.S. Kim, Y.B. Kim, and Y.H. Rhee. 2002c. Preparation and cell compatibility of acryamide-grafted poly(3- hydroxyoctanoate). Int. J. Biol. Macromol. 30, 129-135 DOI ScienceOn |
63 | Abraham, G.A., A. Gallardo, J.S. Roman, E.R. Olivera, R. Jodra, B. Garcia, B. Minambres, J.L. Garcia, and J.M. Luengo. 2001. Microbial synthesis of poly(-hydroxyalkanoates) bearing phenyl groups from Pseudomonas putida: chemical structure and characterization. Biomacromolecules 2, 562-567 DOI ScienceOn |
64 | Fiedler, S., A. Steinbuchel, and B. H. Rehm. 2002. The role of the fatty acid -oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch. Microbiol. 178, 149-160 DOI |
65 | Kim, H.M., K.E. Ryu, K.S. Bae, and Y.H. Rhee. 2000c. Purification and characterization of extracellular medium-chainlength polyhydroxyalkanoate depolymerase from Pseudomonas sp. RY-1. J. Biosci. Bioeng. 89, 196-198 DOI ScienceOn |
66 | Kim, O.Y., R.A. Gross, and D.R. Rutherford. 1995a. Bioengineering of poly(-hydroxyalkanoates) for advanced material applications: incorporation of cyano and nitrophenoxy side chain substituents. Can. J. Microbiol. 41(Suppl. 1), 32-43 DOI ScienceOn |
67 | Kim, Y.B., D.Y. Kim, and Y.H. Rhee. 1999. PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32, 6058-6064 DOI ScienceOn |
68 | Volova, T., E. Shishatskaya, V. Sevastianov, S. Efremov, and O. Mogilnaya. 2003. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem. Eng. J. 16, 125-133 DOI ScienceOn |
69 | He, W., W. Tian, G. Zhang, G.-Q. Chen, and Z. Zhang. 1998. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol. Lett. 169, 45-49 DOI |
70 | Chen, J.Y., G. Song, and G.Q. Chen. 2006. A lower specificity of PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and mediumchain- length 3-hydroxyalkanoates. Antonie van Leeuwenhoek 89, 157-167 DOI |
71 | Timm, A. and A. Steinbuchel. 1990. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56, 3360-3367 PUBMED |
72 | Nishida, H. and Y. Tokiwa. 1993. Distribution of poly( -hydroxybutyrate) and poly(-caprolactone) aerobic degrading microorganisms in different environments. J. Environ. Polym. Degrad. 1, 227-233 DOI |
73 | Rhee, Y.H., Y.H. Kim, and K.S. Shin. 2006. Characterization of an extracellular poly(3-hydroxyoctanoate) depolymerase from the marine isolate, Pseudomonas luteola M13-4. Enz. Microb. Technol. 38, 529-535 DOI ScienceOn |
74 | Steinbuchel, A. and T. Lutke-Eversloh. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81-96 DOI ScienceOn |
75 | Bear, M.M., E. Renard, S. Randriamahefa, V. Langlois, and Ph. Guerin. 2001. Preparation of a bacterial polyester with carboxy groups in the side chains. Macromol. Chem. 4, 289-293 DOI |
76 | Eroglu, M.S., T. Caykara, and B. Hazer. 1998. Gamma rays induced grafting of methyl methacrylate onto poly( -hydroxynonanoate). Polym. Bull. 41, 53-60 DOI |
77 | Hazer, B. and A. Steinbuchel. 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74, 1-12 DOI ScienceOn |
78 | Kim, D.Y., J.S. Nam, and Y.H. Rhee. 2002b. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Pseudomonas alcaligenes LB19. Biomacromolecules 3, 291-296 DOI ScienceOn |
79 | Suyama, T., Y. Tokiwa, P. Ouichanpagdee, T. Kanagawa, and Y. Kamagata. 1998. Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl. Environ. Microbiol. 64, 5008-5001 PUBMED |
80 | Imamura, T., T. Kenmoku, T. Honma, S. Kobayashi, and T. Yano. 2001. Direct biosynthesis of poly(3-hydroxyalkanoates) bearing epoxide groups. Int. J. Biol. Macromol. 29, 295-301 DOI ScienceOn |
81 | Taki, H., K. Syutsubo, R.G. Mattison, and S. Harayama. 2007. Identification and characterization of o-xylene-degrading Rhodococcus spp. Which were dominant species in the remediation of oxylene- contaminated soils. Biodegradation 18, 17-26 DOI |
82 | Kim, H., H.S. Ju, and J. Kim. 2000b. Characterization of an extracellular poly(3-hydroxy-5-phenylvalerate) depolymerase from Xanthomonas sp. JS02. Appl. Microbiol. Biotechnol. 53, 323-327 DOI |
83 | Kim, D.Y., S.B. Jung, G.G. Choi, Y.B. Kim, and Y.H. Rhee. 2001a. Biosynthesis of polyhydroxyalkanoate copolyester containing cyclohexyl groups by Pseudomonas oleovorans. Int. J. Biol. Macromol. 29, 145-150 DOI ScienceOn |
84 | Roberts, J.D., J. Kraut, R.A. Alden, and J.J. Birktoft. 1972. Subtilisin: a stereochemical mechanism involving transition-state stabilization. Biochemistry 11, 4293-4303 DOI ScienceOn |
85 | Jung, K., R. Hany, D. Rentsch, T. Storni, T. Egli, and B. Witholt. 2000. Characterization of new bacterial copolyesters containing 3-hydroxyoxoalkanoates and acetoxy-3-hydroxyalkanoates. Macromolecules 33, 8571-8575 DOI ScienceOn |
86 | Jaeger, K.E., S. Ransac, B.W. Dijkstra, D. Colson, M. van Heuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29-63 DOI |
87 | Scholz, C., R.C. Fuller, and R.W. Lenz. 1994. Growth and polymer incorporation of Pseudomonas oleovorans on alkyl esters of heptanoic acid. Macromolecules 27, 2886-2889 DOI ScienceOn |
88 | Tobin, K.M. and K.E. O'Connor. 2005. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilizing aromatic hydrocarbons. FEMS Microbiol. Lett. 253, 111-118 DOI ScienceOn |
89 | Williams, S.F., D.P. Martin, D.M. Horowitz, and O.P. Peoples. 1999. PHA applications: addressing the price performance issue I. Tissue engineering. Int. J. Biol. Macromol. 25, 111-121 DOI ScienceOn |
90 | Arostegui, S.M., M.A. Aponte, E. Diaz, and E. Schroder. 1999. Bacterial polyesters produced by Pseudomonas oleovorans containing nitrophenyl groups. Macromolecules 32, 2889-2895 DOI ScienceOn |
91 | Jang, J.Y., D. Kim, H.W. Bae, K.Y. Choi, J.C. Chae, G.J. Zylstra, Y.M. Kim, and E. Kim. 2005. Isolation and characterization of a Rhodococcus species strain able to grow on ortho- and para-xylene. J. Microbiol. 43, 325-330 과학기술학회마을 |
92 | Fukui, T., S. Yokomizo, G. Kobayashi, and Y. Doi. 1999. Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in Escherichia coli. FEMS Microbiol. Lett. 170, 69-75 DOI |