Browse > Article

Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates  

Kim, Do-Young (Department of Microbiology, Chungnam National University)
Kim, Hyung-Woo (Department of Microbiology, Chungnam National University)
Chung, Moon-Gyu (Department of Microbiology, Chungnam National University)
Rhee, Young-Ha (Department of Microbiology, Chungnam National University)
Publication Information
Journal of Microbiology / v.45, no.2, 2007 , pp. 87-97 More about this Journal
Abstract
Medium-chain-length polyhydroxyalkanoates (MCL-PHAs), which have constituents with a typical chain length of $C_{6}-C_{14}$, are polyesters that are synthesized and accumulated in a wide variety of Gram-negative bacteria, mainly pseudomonads. These biopolyesters are promising materials for various applications because they have useful mechanical properties and are biodegradable and biocompatible. The versatile metabolic capacity of some Pseudomonas spp. enables them to synthesize MCL-PHAs that contain various functional substituents; these MCL-PHAs are of great interest because these functional groups can improve the physical properties of the polymers, allowing the creation of tailor-made products. Moreover, some functional substituents can be modified by chemical reactions to obtain more useful groups that can extend the potential applications of MCL-PHAs as environmentally friendly polymers and functional biomaterials for use in biomedical fields. Although MCL-PHAs are water-insoluble, hydrophobic polymers, they can be degraded by microorganisms that produce extracellular MCL-PHA depolymerase. MCL-PHA-degraders are relatively uncommon in natural environments and, to date, only a limited number of MCL-PHA depolymerases have been investigated at the molecular level. All known MCL-PHA depolymerases share a highly significant similarity in amino acid sequences, as well as several enzymatic characteristics. This paper reviews recent advances in our knowledge of MCL-PHAs, with particular emphasis on the findings by our research group.
Keywords
polyhydroxyalkanoate; medium-chain-length polyhydroxyalkanoates; biopolyester; modification; biodegradation; MCL-PHA depolymerase;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 37  (Related Records In Web of Science)
Times Cited By SCOPUS : 26
연도 인용수 순위
1 Ashby, R.D., A.M. Cromwick, and T.A. Foglia. 1998. Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow. Int. J. Biol. Macromol. 23, 61-72   DOI   ScienceOn
2 Chen, J.Y., T. Liu, Z. Zheng, J.C. Chen, and G.Q. Chen. 2004. Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol. Lett. 234, 231-237   DOI
3 Deng, Y., K. Zhao, X.F. Zhang, P. Hu, and J.C. Chen. 2002. Study on the three-dimensional proliferation of rabbit articular cartilage- derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23, 4049-4056   DOI   ScienceOn
4 Doi, Y. and C. Abe. 1990. Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy- $\omega$-chloroalkanoates. Macromolecules 23, 3705-3707   DOI
5 Elbanna, K., T. Lutke-Eversloh, D. Jendrossek, H. Luftmann, and A. Steinbuchel. 2004. Studies on the biodegradability of polythiester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch. Microbiol. 182, 212-225   PUBMED
6 Eroglu, M.S., B. Hazer, T. Ozturk, and T. Caykara. 2005. Hydroxylation of pendant vinyl groups of poly(3-hydroxy undecenoate) in high yield. J. Appl. Polym. Sci. 97, 2132-2139   DOI   ScienceOn
7 Fritzsche, K., R.W. Lenz, and R.C. Fuller. 1990a. Production of unsaturated polyesters by Pseudomonas oleovorans. Int. J. Biol. Macromol. 12, 85-91   DOI   ScienceOn
8 Hazer, B., S.I. Demirel, M. Borcakli, M.S. Eroglu, M. Cakmak, and B. Erman. 2001. Free radical crosslinking of unsaturated bacterial polyester obtained from soybean oily acids. Polym. Bull. 46, 389-394   DOI
9 Hoffmann, N., A. Steinbuchel, and B.H.A. Rhem. 2000. The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol. Lett. 184, 253-259윁   DOI
10 Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 1998. Bacterial poly(3-hydroxyalkanoates) bearing carbon-carbon triple bonds. Macromolecules 31, 4760-4763   DOI   ScienceOn
11 Kim, H.J., D.Y. Kim, J.S. Nam, K.S. Bae, and Y.H. Rhee. 2003b. Characterization of an extracellular medium-chain-length poly (3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72. Antonie van Leeuwenhoek 83, 183-1895   DOI
12 Kim, H.W., C.W. Chung, and Y.H. Rhee. 2005b. UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly (3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. Int. J. Biol. Macromol. 35, 47-538   DOI   ScienceOn
13 Kim, Y.B. and R.W. Lenz. 2001. Polyesters from microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 51-79   DOI   PUBMED
14 Mallarde, D., M. Valiere, C. David, M. Menet, and Ph. Guerin. 1998. Hydrolytic degradability of poly(3-hydroxyoctanoate) and of a poly(3-hydroxyoctanoate)/poly(R,S-lactic acid) blend. Polymer 15, 3387-33921
15 Park, W.H., R.W. Lenz, and S. Goodwin. 1998. Epoxidation of bacterial polyesters with unsaturated side chains. II. Rate of epoxidation and polymer properties. J. Polym. Sci. A Polym. Chem. 36, 2381-2387   DOI   ScienceOn
16 Renard, E., M. Walls, Ph. Guerin, and V. Langlois. 2004. Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym. Degrad. Stab. 85, 779-787   DOI   ScienceOn
17 Ilter, S., B. Hazer, A.H. Arkin, and R.W. Lenz. 2001. Graft copolymerization of methyl methacrylate onto bacterial polyester containing unsaturated side chains. Macromol. Chem. Phys. 202, 2281-2286   DOI   ScienceOn
18 Song, J.J. and S.C. Yoon. 1996. Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BM01. Appl. Environ. Microbiol. 62, 536- 544   PUBMED
19 Takagi, Y., M. Hashii, A. Maehara, and T. Yamane. 1999. Biosynthesis of polyhydroxyalkanoate with a thiophenoxy side group obtained from Pseudomonas putida. Macromolecules 32, 8315-8318   DOI   ScienceOn
20 Witholt, B. and B. Kessler. 1999. Perspectives of medium chain length poly(hydroxyalkanoates). Curr. Opin. Biotechnol. 10, 279-285   DOI   ScienceOn
21 Lim, J.H. 2006. Expression, purification and characterization of Rhodococcus equi P2 MCL-PHA depolymerase in Escherichia coli. MS thesis, Chungnam National University, Korea
22 Gagnon, K.D., R.W. Lenz, R.J. Farris, and R.C. Fuller. 1994. Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer 35, 4358-4367   DOI   ScienceOn
23 Valappil, S.P., A.R. Boccaccini, C. Bucke, and I. Roy. 2007. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie van Leeuwenhoek 91, 1-17   PUBMED
24 Kim, S.N., S.C. Shim, D.Y. Kim, Y.H. Rhee, and Y.B. Kim. 2001b. Photochemical crosslinking and enzymatic degradation of poly (3-hydroxyalkanoate)s for micropatterning in photolithography. Macromol. Rapid Commun. 22, 1066-1071   DOI   ScienceOn
25 Ashby, R.D., T.A. Foglia, D.K.Y. Solaiman, C.K. Liu, A. Nunez, and G. Eggink. 2000. Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int. J. Biol. Macromol. 27, 355-361   DOI   ScienceOn
26 Klingbeil, B., R.M. Kroppenstedt, and D. Jendrossek. 1996. Taxonomic identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiol. Lett. 142, 215-221   DOI
27 Schirmer, A., D. Jendrossek, and H.G. Schlegel. 1993. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59, 1220-1227   DOI
28 Hein, H., J.R.J. Paletta, and A. Steinbuchel. 2002 Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases PhaC1 and PhaC2. Appl. Microbiol. Biotechnol. 58, 229-236   DOI
29 Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2000a. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28, 23-29   DOI   ScienceOn
30 Kim, H.W., C.W. Chung, Y.B. Kim, and Y.H. Rhee. 2005c. Preparation and hydrolytic degradation of semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly(lactide-coglycolide). Int. J. Biol. Macromol. 37, 221-226   DOI   ScienceOn
31 Zinn, M., B. Witholt, and T. Egli. 2001. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Del. Rev. 53, 5-21   DOI   ScienceOn
32 Kim, D.Y., H.C. Kim, S.Y. Kim, and Y.H. Rhee. 2005a. Molecular characterization of extracellular medium-chain-length poly(3- hydroxyalkanoate) depolymerase genes from Pseudomonas alcaligenes strains. J. Microbiol. 43, 285-294   과학기술학회마을
33 Dufresne, A., L. Reche, R.H. Marchessault, and M. Lacroix. 2001. Gamma-ray crosslinking of poly(3-hydroxyoctanoate-co-undecenoate). Int. J. Biol. Macromol. 29, 73-82   DOI   ScienceOn
34 Kim, O.Y., R.A. Gross, W.J. Hammer, and R.A. Newmark. 1996a. Microbial synthesis of poly($\beta$-hydroxyalkanoates) containing fluorinated side-chain substituents. Macromolecules 29, 4572- 4581   DOI   ScienceOn
35 Schirmer, A. and D. Jendrossek. 1994. Molecular characterization of the extracellular poly(3-hydroxyoctanoic acid) [P(3HO)] depolymerase gene of Pseudomonas fluorescens GK13 and of its gene product. J. Bacteriol. 176, 7065-7073
36 Steinbuchel, A. and H.E. Valentin. 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128, 219-228   DOI
37 Curley, J.M., B. Hazer, R.W. Lenz, and R.C. Fuller. 1996. Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29, 1762-1766   DOI   ScienceOn
38 Lee, M.Y., W.H. Park, and R.W. Lenz. 2000. Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer 41, 1703-1709   DOI   ScienceOn
39 Steinbuchel, A. and S. Hein, 2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 81-123   DOI   PUBMED
40 Chung, C.W., H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2003. Poly (ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int. J. Biol. Macromol. 32, 17-22   DOI   ScienceOn
41 Doi, Y., S. Kitamura, and H. Abe. 1995. Microbial synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28, 4822-4828   DOI   ScienceOn
42 Jendrossek, D. 2001. Microbial degradation of polyesters. Adv. Biochem. Eng. Biotechnol. 71, 293-325   DOI   PUBMED
43 Kim, Y.B., Y.H. Rhee, S.H. Han, G.S. Heo, and J.S. Kim. 1996b. Poly-3-hydroxyalkanoates produced from Pseudomonas oleovorans grown with $\omega$-phenoxyalkanoates. Macromolecules 29, 3432-3435   DOI   ScienceOn
44 Park, I.J., Y.H. Rhee, N.Y. Cho, and K.S. Shin. 2006. Cloning and analysis of medium-chain-length poly(3-hydroxyalkanoate) depolymerase gene of Pseudomonas luteola M13-4. J. Microbiol. Biotechnol. 16, 1935-1939   과학기술학회마을
45 Huijberts, G.N.M., G. Eggink, P. de Waard, G.W. Huisman, and B. Witholt. 1992. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58, 536-544   PUBMED
46 Tsuge, T., K. Taguchi, S. Taguchi, and Y. Doi. 2003. Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid $\beta$ -oxidation. Int. J. Biol. Macromol. 31, 195-205   DOI   ScienceOn
47 Bear, M.M., M.A. Leboucher-Durand, V. Langlois, R.W. Lenz, S. Goodwin, and Ph. Guerin. 1997. Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. React. Funct. Polym. 34, 65-77   DOI   ScienceOn
48 Lenz, R.W., Y.B. Kim, and R.C. Fuller. 1992. Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol. Rev. 103, 207-214   DOI
49 Mergaert, J. and J. Swings. 1996. Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J. Ind. Microbiol. 17, 463-469   DOI
50 Fritzsche, K., R.W. Lenz, and R.C. Fuller. 1990b. An unusual bacterial polyester with a phenyl pendant group. Macromol. Chem. 191, 1957-1965   DOI
51 Qi, Q.S., B.H.A. Rehm, and A. Steinbuchel. 1997. Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol. Lett. 157, 155-162   DOI
52 Arkin, A.H., B. Hazer, and M. Borcakli. 2000. Chlorination of poly (3-hydroxyalkanoates) containing unsaturated side chains. Macromolecules 33, 3219-3223   DOI   ScienceOn
53 Chung, C.W. 2005. Characterization of chemically modified bacterial medium-chain-length poly(3-hydroxyalkanoates) for biomedical applications. Ph. D. thesis, Chungnam National University, Korea
54 Kang, H.O., C.W. Chung, H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2001. Cometabolic production of copolyesters consisting of 3- hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie van Leeuwenhoek 80, 185-191   DOI   ScienceOn
55 Kim, D.Y., J.S. Nam, Y.H. Rhee, and Y.B. Kim. 2003a. Biosynthesis of novel poly(3-hydroxyalkanoates) containing alkoxy groups by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 13, 632-635   과학기술학회마을
56 Kim, Y.B., R.W. Lenz, and R.C. Fuller. 1992. Poly($\beta$ -hydroxyalkanoates) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25, 1852-1857   DOI
57 Ewering, C., T. Lutke-Eversloh, H. Luftmann, and A. Steinbuchel. 2002. Identification of novel sulfur-containing bacterial polyesters: biosynthesis of poly(3-hydroxy-S-propyl-$\omega$-thioalkanoates) containing thioester linkages in the side chains. Microbiology 148, 1397-1406   DOI   PUBMED
58 Hazer, B. 1996. Poly($\beta$ -hydroxynonanoate) and polystyrene or poly (methylmethacrylate) graft copolymers: microstructure characteristics and mechanical and thermal behavior. Macromol. Chem. Phys. 197, 431-441   DOI
59 Kim, D.Y. and Y.H. Rhee. 2003. Biodegradation of microbial and synthetic polyesters by fungi. Appl. Microbiol. Biotechnol. 61, 300-308   DOI   PUBMED
60 Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2002a. Cometabolic production of poly(3-hydroxyalkanoates) containing carbon-carbon double and triple bonds by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 12, 518-521
61 Nam, J.S., H.C. Kim, D.Y. Kim, and Y.H. Rhee. 2002. Distribution and diversity of microbial communities relating to biodegradation of medium-chain-length poly(3-hydroxyalkanoates) in soils. In Proceedings of 9th International Symposium on the Genetics of Industrial Microorganisms. Gyeongju, Korea. p192
62 Kim, H.W., C.W. Chung, S.S. Kim, Y.B. Kim, and Y.H. Rhee. 2002c. Preparation and cell compatibility of acryamide-grafted poly(3- hydroxyoctanoate). Int. J. Biol. Macromol. 30, 129-135   DOI   ScienceOn
63 Abraham, G.A., A. Gallardo, J.S. Roman, E.R. Olivera, R. Jodra, B. Garcia, B. Minambres, J.L. Garcia, and J.M. Luengo. 2001. Microbial synthesis of poly($\beta$-hydroxyalkanoates) bearing phenyl groups from Pseudomonas putida: chemical structure and characterization. Biomacromolecules 2, 562-567   DOI   ScienceOn
64 Fiedler, S., A. Steinbuchel, and B. H. Rehm. 2002. The role of the fatty acid $\beta$ -oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch. Microbiol. 178, 149-160   DOI
65 Kim, H.M., K.E. Ryu, K.S. Bae, and Y.H. Rhee. 2000c. Purification and characterization of extracellular medium-chainlength polyhydroxyalkanoate depolymerase from Pseudomonas sp. RY-1. J. Biosci. Bioeng. 89, 196-198   DOI   ScienceOn
66 Kim, O.Y., R.A. Gross, and D.R. Rutherford. 1995a. Bioengineering of poly($\beta$-hydroxyalkanoates) for advanced material applications: incorporation of cyano and nitrophenoxy side chain substituents. Can. J. Microbiol. 41(Suppl. 1), 32-43   DOI   ScienceOn
67 Kim, Y.B., D.Y. Kim, and Y.H. Rhee. 1999. PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32, 6058-6064   DOI   ScienceOn
68 Volova, T., E. Shishatskaya, V. Sevastianov, S. Efremov, and O. Mogilnaya. 2003. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem. Eng. J. 16, 125-133   DOI   ScienceOn
69 He, W., W. Tian, G. Zhang, G.-Q. Chen, and Z. Zhang. 1998. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol. Lett. 169, 45-49   DOI
70 Chen, J.Y., G. Song, and G.Q. Chen. 2006. A lower specificity of PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and mediumchain- length 3-hydroxyalkanoates. Antonie van Leeuwenhoek 89, 157-167   DOI
71 Timm, A. and A. Steinbuchel. 1990. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56, 3360-3367   PUBMED
72 Nishida, H. and Y. Tokiwa. 1993. Distribution of poly($\beta$ -hydroxybutyrate) and poly($\epsilon$-caprolactone) aerobic degrading microorganisms in different environments. J. Environ. Polym. Degrad. 1, 227-233   DOI
73 Rhee, Y.H., Y.H. Kim, and K.S. Shin. 2006. Characterization of an extracellular poly(3-hydroxyoctanoate) depolymerase from the marine isolate, Pseudomonas luteola M13-4. Enz. Microb. Technol. 38, 529-535   DOI   ScienceOn
74 Steinbuchel, A. and T. Lutke-Eversloh. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81-96   DOI   ScienceOn
75 Bear, M.M., E. Renard, S. Randriamahefa, V. Langlois, and Ph. Guerin. 2001. Preparation of a bacterial polyester with carboxy groups in the side chains. Macromol. Chem. 4, 289-293   DOI
76 Eroglu, M.S., T. Caykara, and B. Hazer. 1998. Gamma rays induced grafting of methyl methacrylate onto poly($\beta$ -hydroxynonanoate). Polym. Bull. 41, 53-60   DOI
77 Hazer, B. and A. Steinbuchel. 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74, 1-12   DOI   ScienceOn
78 Kim, D.Y., J.S. Nam, and Y.H. Rhee. 2002b. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Pseudomonas alcaligenes LB19. Biomacromolecules 3, 291-296   DOI   ScienceOn
79 Suyama, T., Y. Tokiwa, P. Ouichanpagdee, T. Kanagawa, and Y. Kamagata. 1998. Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl. Environ. Microbiol. 64, 5008-5001   PUBMED
80 Imamura, T., T. Kenmoku, T. Honma, S. Kobayashi, and T. Yano. 2001. Direct biosynthesis of poly(3-hydroxyalkanoates) bearing epoxide groups. Int. J. Biol. Macromol. 29, 295-301   DOI   ScienceOn
81 Taki, H., K. Syutsubo, R.G. Mattison, and S. Harayama. 2007. Identification and characterization of o-xylene-degrading Rhodococcus spp. Which were dominant species in the remediation of oxylene- contaminated soils. Biodegradation 18, 17-26   DOI
82 Kim, H., H.S. Ju, and J. Kim. 2000b. Characterization of an extracellular poly(3-hydroxy-5-phenylvalerate) depolymerase from Xanthomonas sp. JS02. Appl. Microbiol. Biotechnol. 53, 323-327   DOI
83 Kim, D.Y., S.B. Jung, G.G. Choi, Y.B. Kim, and Y.H. Rhee. 2001a. Biosynthesis of polyhydroxyalkanoate copolyester containing cyclohexyl groups by Pseudomonas oleovorans. Int. J. Biol. Macromol. 29, 145-150   DOI   ScienceOn
84 Roberts, J.D., J. Kraut, R.A. Alden, and J.J. Birktoft. 1972. Subtilisin: a stereochemical mechanism involving transition-state stabilization. Biochemistry 11, 4293-4303   DOI   ScienceOn
85 Jung, K., R. Hany, D. Rentsch, T. Storni, T. Egli, and B. Witholt. 2000. Characterization of new bacterial copolyesters containing 3-hydroxyoxoalkanoates and acetoxy-3-hydroxyalkanoates. Macromolecules 33, 8571-8575   DOI   ScienceOn
86 Jaeger, K.E., S. Ransac, B.W. Dijkstra, D. Colson, M. van Heuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29-63   DOI
87 Scholz, C., R.C. Fuller, and R.W. Lenz. 1994. Growth and polymer incorporation of Pseudomonas oleovorans on alkyl esters of heptanoic acid. Macromolecules 27, 2886-2889   DOI   ScienceOn
88 Tobin, K.M. and K.E. O'Connor. 2005. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilizing aromatic hydrocarbons. FEMS Microbiol. Lett. 253, 111-118   DOI   ScienceOn
89 Williams, S.F., D.P. Martin, D.M. Horowitz, and O.P. Peoples. 1999. PHA applications: addressing the price performance issue I. Tissue engineering. Int. J. Biol. Macromol. 25, 111-121   DOI   ScienceOn
90 Arostegui, S.M., M.A. Aponte, E. Diaz, and E. Schroder. 1999. Bacterial polyesters produced by Pseudomonas oleovorans containing nitrophenyl groups. Macromolecules 32, 2889-2895   DOI   ScienceOn
91 Jang, J.Y., D. Kim, H.W. Bae, K.Y. Choi, J.C. Chae, G.J. Zylstra, Y.M. Kim, and E. Kim. 2005. Isolation and characterization of a Rhodococcus species strain able to grow on ortho- and para-xylene. J. Microbiol. 43, 325-330   과학기술학회마을
92 Fukui, T., S. Yokomizo, G. Kobayashi, and Y. Doi. 1999. Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in Escherichia coli. FEMS Microbiol. Lett. 170, 69-75   DOI