Browse > Article
http://dx.doi.org/10.4014/jmb.1106.06039

Mcl-PHAs Produced by Pseudomonas sp. Gl01 Using Fed-Batch Cultivation with Waste Rapeseed Oil as Carbon Source  

Mozejko, Justyna (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Wilke, Andreas (Department of Mechanical and Process Engineering, University of Applied Sciences Offenburg)
Przybylek, Grzegorz (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Ciesielski, Slawomir (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.3, 2012 , pp. 371-377 More about this Journal
Abstract
The present study describes medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production by the Pseudomonas Gl01 strain isolated from mixed microbial communities utilized for PHAs synthesis. A two-step fed-batch fermentation was conducted with glucose and waste rapeseed oil as the main carbon source for obtaining cell growth and mcl-PHAs accumulation, respectively. The results show that the Pseudomonas Gl01 strain is capable of growing and accumulating mcl-PHAs using a waste oily carbon source. The biomass value reached 3.0 g/l of CDW with 20% of PHAs content within 48 h of cultivation. The polymer was purified from lyophilized cells and analyzed by gas chromatography (GC). The results revealed that the monomeric composition of the obtained polyesters depended on the available substrate. When glucose was used in the growth phase, 3-hydroxyundecanoate and 3-hydroxydodecanoate were found in the polymer composition, whereas in the PHAs-accumulating stage, the Pseudomonas Gl01 strain synthesized mcl-PHAs consisting mainly of 3-hydroxyoctanoate and 3-hydroxydecanoate. The transcriptional analysis using reverse-transcription real-time PCR reaction revealed that the phaC1 gene could be transcribed simultaneously to the phaZ gene.
Keywords
Biopolymers; mcl-polyhydroxyalkanoates; Pseudomonas sp.; real-time PCR; reverse transcription; waste oil;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Schlegel, H. G., G. Gottschalk, and R. von Bartha. 1961. Formation and utilization of poly-${\beta}$-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas). Nature 191: 463-465.   DOI
2 Silva-Queiroza, S. R., L. F. Silva, J. G. C. Pradella, E. M. Pereira, and J. G. C. Gomez. 2009. PHAMCL biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas putida strains show differences on monomer specificities. J. Biotechnol. 143: 111-118.   DOI   ScienceOn
3 Solaiman, D. K., R. D. Ashby, and T. A. Foglia. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690-694.   DOI   ScienceOn
4 Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay. 2007. Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 71: 423-431.
5 Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay. 2007. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 74: 69-77.   DOI   ScienceOn
6 Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay. 2007. Increasing the yield of mcl-PHA from nonanoic acid by cofeeding glucose during the PHA accumulation stage in twostage fed-batch fermentations of Pseudomonas putida KT2440. J. Biotechnol. 132: 280-282.   DOI   ScienceOn
7 Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay. 2009. Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited, fed-batch culture. J. Biotechnol. 143: 262-267.   DOI   ScienceOn
8 Anderson, A. J. and E. A. Dawes. 1990. Occurence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.
9 American Public Health Association. 1992. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington.
10 Braunegg, G., B. Sonnleitner, and R. M. Lafferty. 1978. A rapid gas chromatographic method for the determination of poly-bhydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37.   DOI
11 Carnicero, D., M. Fernández-Valverde, L. M. Canedo, C. Schleissner, and J. M. Luengo. 1997. Octanoic acid uptake in Pseudomonas putida U. FEMS Microbiol. Lett. 149: 51-58.   DOI   ScienceOn
12 Ciesielski, S., J. Mo ejko, and G. Przyby ek. 2010. The influence of nitrogen limitation on mcl-PHA synthesis by two newly isolated strains of Pseudomonas sp. J. Ind. Microbiol. Biotechnol. 37: 511-520.   DOI   ScienceOn
13 Ciesielski, S., T. Pokoj, and E. Klimiuk. 2010. Cultivationdependent and -independent characterization of microbial community producing polyhydroxyalkanoates from raw-glycerol. J. Microbiol. Biotechnol. 20: 853-861.   DOI   ScienceOn
14 Diniz, S. C., M. K. Taciro, J. G. C. Gomez, and J. G. da Cruz Pradella. 2004. High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoates production from sugarcane carbohydrates. Appl. Biochem. Biotechnol. 119: 51-69.   DOI   ScienceOn
15 Durner, R., M. Zinn, B. Witholt, and T. Egli. 2001. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Biotechnol. Bioeng. 72: 278-288.   DOI   ScienceOn
16 Furrer, P., R. Hany, D. Rentsch, A. Grubelnik, K. Ruth, S. Panke, and M. Zinn. 2007. Quantitative analysis of bacterial medium-chain-length poly([R]-3-hydroxyalkanoates) by gas chromatography. J. Chromatogr. A 1143: 199-206.   DOI   ScienceOn
17 Huijberts, G. N. M. and G. Eggink. 1996. Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT2442 in continuous cultures. Appl. Microbiol. Biotechnol. 46: 233-239.   DOI   ScienceOn
18 Haba, E., J. Vidal-Mas, M. Bassas, M. J. Espuny, J. Llorens, and A. Manresa. 2007. Poly 3-(hydroxyalkanoates) produced from oily substrates by Pseudomonas aeruginosa 47T2 (NCBIM 40044): Effect of nutrients and incubation temperature on polymer composition. Biochem. Eng. J. 35: 99-106.   DOI   ScienceOn
19 Hartmann, R., R. Hany, E. Pletscher, A. Ritter, B. Witholt, and M. Zinn. 2006. Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: Batch versus chemostat production. Biotechnol. Bioeng. 93: 737-746.   DOI   ScienceOn
20 Hoffman, N. and B. H. A. Rehm. 2004. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol. Lett. 237: 1-7.   DOI   ScienceOn
21 Huisman, G. W., E. Wonink, G. Koning, H. Preusting, and B. Witholt. 1992. Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl. Microbiol. Biotechnol. 38: 1-5.
22 Kim, G. J., I. Y. Lee, S. C. Yoon, Y. C. Shin, and Y. H. Park. 1997. Enhanced yield and a high production of medium-chainlength poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb. Technol. 20: 500-505.   DOI   ScienceOn
23 Lageveen, R. G., G. W. Huisman, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt. 1988. Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54: 2924-2932.
24 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25: 402-408.   DOI   ScienceOn
25 Lee, J., S. Y. Lee, S. Park, and A. P. Middelberg. 1999. Control of fed-batch fermentations. Biotechnol. Adv. 17: 29-48.
26 Lee, S. Y. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14.   DOI   ScienceOn
27 Lee, S. Y., H. H. Wong, J. Choi, S. H. Lee, S. C. Lee, and C. S. Han. 2000. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466-470.   DOI   ScienceOn
28 Lopez-Cuellar, M. R., J. Alba-Flores, J. N. Gracida-Rodriguez, and F. Perez-Guevara. 2011. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int. J. Biol. Macromol. 48: 74-80.   DOI   ScienceOn
29 Ramsay, B. A., I. Saracovan, J. A. Ramsay, and R. H. Marchessault. 1991. Continuous production of long-side-chain poly-${\beta}$-hydroxyalkanoates by Pseudomonas oleovorans. Appl. Environ. Microbiol. 57: 625-629.
30 Ramsay, B. A., I. Saracovan, J. A. Ramsay, and R. Marchessault. 1992. Effect of nitrogen limitation on long-side-chain poly-betahydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl. Environ. Microbiol. 58: 744-746.
31 Ren, Q., G. de Roo, B. Witholt, M. Zinn, and L. Thony-Meyer. 2010. Influence of growth stage on activities of polyhydroxyalkanoate (PHA) polymerase and PHA depolymerase in Pseudomonas putida U. BMC Microbiol. 10: 254-262.   DOI   ScienceOn
32 Riesenberg, D. and R. Guthke. 1999. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51: 422-430.   DOI   ScienceOn