• Title/Summary/Keyword: poly (ethylene glycol)

Search Result 389, Processing Time 0.025 seconds

Poly(ethylene glycol) Immobilization to Titanium Oxide Substrates Through Native Chemical Ligation (Native Chemical Ligation을 통한 티타늄 산화물 기판에의 폴리에틸렌글리콜 고정)

  • Byeon, Eun-Gyeong;Kim, Jang-Bae;Gang, Seong-Min;Lee, Hyeok-Jin;Bang, Du-Hui;Lee, Hae-Sin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.84-85
    • /
    • 2012
  • Poly(ethylene glycol) (PEG)는 Hydrophilic하면서 독성이 없기 때문에 약물과 관련된 연구가 많이 이루어졌다. 초기 PEGylation은 약물과 관련된 연구가 주를 이루었지만, 최근에는 PEG의 non-fouling 효과 때문에 표면에 적용하여 biomedical 장비에 세포나 단백질이 붙지 않도록 하는 개질하는 방법에 많은 연구가 진행되고 있다. Native Chemical Ligation(N.C.L.)은 단백질을 합성할 때, Protecting group을 사용하지 않고 반응을 진행시킬 수 있기 때문에 많은 주목을 받고 있다. N.C.L.은 합성한 두 물질이 Thioester와 Cysteine을 갖고 있으면, mild condition에서 amide bond를 형성하면서 반응이 쉽게 진행되기 때문에 다양한 분야에 적용할 수 있다. 이 논문에서 우리는 N.C.L.을 표면에 적용시켰으며 그 중 한 예로 표면 PEGylation진행하였다.

  • PDF

Characteristics of PEGylated Polydiacetylene Liposome and its Inclusion Complex Formation with α-Cyclodextrin

  • Choi, Hye;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3083-3087
    • /
    • 2013
  • Diacetylene lipid monomers possess the capability to self-assemble into vesicles via polymerization under ultraviolet irradiation, resulting in the formation of polydiacetylene (PDA) liposomes. Exposure of the polymerized vesicles to external stimuli is known to induce a unique blue-to-red color transition. The cyclic oligosaccharide ${\alpha}$-cyclodextrin known for its use in many applications, such as drug delivery, purification, and stimulus sensing, is able to form an inclusion complex with poly(ethylene glycol) (PEG) in aqueous solution. In this study, we prepared polymeric liposomes with PEG (PEG-PDA) with the aim of improving the stability of the vesicles and colorimetric response toward ${\alpha}$-cyclodextrin. We demonstrated that PEG-PDA liposome displays unique characteristics compared with native PDA liposome and it also shows apparent chromic properties of the inclusion complex formation with ${\alpha}$-cyclodextrin.

Targeted Polymeric Gene Delivery for Anti-angiogenic Tumor Therapy

  • Kim, Won-Jong;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.100-108
    • /
    • 2007
  • Gene therapy has become a promising strategy for the treatment of genetically based diseases, such as cancer, which are currently considered incurable. A major obstacle in the field of cancer gene therapy is the development of a safe and efficient delivery system for therapeutic gene transfer. Non-viral vectors have attracted great interest, as they are simple to prepare, stable, easy to modify and relatively safe compared to viral vectors. In this review, an insight into the strategies developed for polyethylenimine (PEI)-based non-viral vectors has been provide, including improvement of the polyplex properties by incorporating hydrophilic spacer, poly(ethylene glycol) (PEG). Moreover, this review will summarize the strategies for the tumor targeting. Specifically, a targeted polymeric gene delivery system, PEI-g-PEG-RGD, will be introduced as an efficient gene delivery vector for tumor therapy, including its functional analysis both in vitro and in vivo.

Preparation of Crack-free YBCO Films by EPD on Silver

  • Soh, Dea-wha;Li, Young-mae;Korobova N.;Park, Sung-Jai
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.27-30
    • /
    • 2003
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode is studied. Poly(ethylene glycol) was coordinated to a structure formed by the EPD process with YBCO particles. The suspension is characterized in terms of zeta potential and conductivity. The d.c electric fields of 200-300 V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the c-axis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of submicrometer-sized pores and randomly orientated grains were prepared from the solution without PEG.

PEGylation of Silk Fibroin Model Peptide

  • Kweon, Hae-Yong;Jo, You-Young;Yeo, Joo-Hong;Woo, Soon-Ok;Han, Sang-Mi;Lee, Kwang-Gill
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • Silk fibroin model peptide, alanine pentamer was synthesized through solid-phase method and modified with poly(ethylene glycol). Nuclear magnetic resonance spectrometry and Fourier-transform infrared spectroscopy showed the conformation of alanine pentamer, $\beta$-sheet structure and random coil conformation were not changed with PEGylation. Differential scanning calorimetry showed that relatively strong exothermic peak around $180^{\circ}C$ by PEGylation. No cytotoxicity of PEGylated pentamer was observed by L929 cell proliferation test.

Electron Spin Resonance Study on the Miscibility of Poly(ethylene glycol) with Cationic Dodecyl Trimethylammonium Bromide Micelle

  • Kim, Jin-Soo;Shin, Dong-Ran;Kang, Young-Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.59-70
    • /
    • 1997
  • The interaction of poly(ethylene glycol) (PEG) with cationic dodecyl trimethyl ammonium bromide (DTAB) micelle was studied with electron spin resonance (ESR) by determining line widths of ESR spectra and coupling constant of nitrogen(AN). The degree of ESR line shape change such as line widths and coupling constant indicated that PEG mixes well with DTAB micelle due to a great hydrophobic interaction with surfactant alkyl chains. This suggests that the PEG can be used as non-ionic surfactant to disperse the exposed oil in the ocean.

  • PDF

Various Alcohols as Electrolysis Suppressants in Zn-air Secondary Batteries

  • Yang, Soyoung;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.339-344
    • /
    • 2018
  • The gelling agent used in Zn-air cells plays a role in improving battery life. It prevents the evaporation of water and diffusion of $Zn^{2+}$ ions away from the current collector. Additional functionality was incorporated by replacing some of the gelling agents with new materials. Alcohols with moderate viscosity, namely maltose, sucrose, poly ethylene glycol 600, and 2-hydroxyethyl cellulose, were used to replace some gelling agents in this work. Among these alcohols, poly ethylene glycol 600 and 2-hydroxyethyl cellulose improved the cycle life of full cells. This improved cycle life was attributed to the inhibition of water electrolysis and the improved cycle life of the anode.

Study on Properties of Poly (ethylene terephthalate) Films Treated with Mono-sodium ethylene glycolate (Mono-sodium ethylene glycolate 처리에 의한 Poly(ethylene terephthalate) Film의 물성에 관한 연구)

  • Cho, Hwan;Heo, Man-Woo;Cho, In-Sool;Lee, Kwang-Woo;Cho, Kyu-Min
    • Textile Coloration and Finishing
    • /
    • v.2 no.4
    • /
    • pp.223-230
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly (ethylene terephthalate) (PET) fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. 1. The tensile strength decreased with increasing decomposition ratio while density, crystallinity and crystallite size increased with increasing decomposition ratio when PET films were treated with MSEG-EG solution. 2. Number of carboxyl end groups was increased until 10-20% decomposition ratio when PET films were treated with MSEG-EG solution. However, the decomposition ratio became more than 20%, the number of carboxyl end groups had tendency to decreased. 3. The surface tension of PET films increased for treating with MSEC-EG solution. Hydrogen bonding force and poler force among the components of surface tension increased while dispersion force among those decreased. 4. The moisture region of PET films increased with increasing decomposition ratio when PET films were treated with MSEG-EG solution.

  • PDF

Dimensional Stability of Poly(ethylene/propylene naphthalate) as a Flexible Substrate Application (유연 기판 소재로 응용을 위한 폴리(에틸렌/프로필렌 나프탈레이트)의 치수안정성 연구)

  • Kim, Jae-Hyun;Heo, Hye-Young;Jung, Tae-Houng;Han, Joon-Hee;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.371-376
    • /
    • 2009
  • The 1,3-propane diol has been introduced as a co-monomer with ethylene glycol to polymerize the poly(ethylene/propylene naphthalate) in order to improve the dimensional stability of poly(ethylene naphthalate) for a possible flexible substrate material. Based on $^1H$-NMR results, it was found that poly (ethylene/propylene naphthalate) has been synthesised successfully. Introducing 1,3-propane diol resulted in the amorphous state in polyester as well as lowering of glass transition and thermal degradation temperature. Coexisting relatively longer propylene segment compared with ethylene in synthesized polyester caused less orientation behavior and reducing thermal expansion coefficient. This is a promising result for poly (ethylene/propylene naphthalate) to apply a flexible substrate.

Bioconjugation of Poly(poly(ethylene glycol) methacrylate)-Coated Iron Oxide Magnetic Nanoparticles for Magnetic Capture of Target Proteins

  • Kang, Sung-Min;Choi, In-Sung S.;Lee, Kyung-Bok;Kim, Yong-Seong
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.259-264
    • /
    • 2009
  • Chemical modification of magnetic nanoparticles(MNPs) with functional polymers has recently gained a great deal of attention because of the potential application of MNPs to in vivo and in vitro biotechnology. The potential use of MNPs as capturing agents and sensitive biosensors has been intensively investigated because MNPs exhibit good separation-capability and binding-specificity for biomolecules after suitable surface functionalization processes. In this work, we demonstrate an efficient method for the surface modification of MNPs, by combining surface-initiated polymerization and the subsequent conjugation of the biologically active molecules. The polymeric shells of non-biofouling poly(poly(ethylene glycol) methacrylate)(pPEGMA) were introduced onto the surface of MNPs by surface-initiated, atom transfer radical polymerization(SI-ATRP). With biotin as a model of biologically active compounds, the polymeric shells underwent successful post-functionalization via activation of the polymeric shells and bioconjugation of biotin. The resulting MNP hybrids showed a biospecific binding property for streptavidin and could be separated by magnet capture.