Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.4.339

Various Alcohols as Electrolysis Suppressants in Zn-air Secondary Batteries  

Yang, Soyoung (Department of Chemistry and Energy Engineering Sangmyung University)
Kim, Ketack (Department of Chemistry and Energy Engineering Sangmyung University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.4, 2018 , pp. 339-344 More about this Journal
Abstract
The gelling agent used in Zn-air cells plays a role in improving battery life. It prevents the evaporation of water and diffusion of $Zn^{2+}$ ions away from the current collector. Additional functionality was incorporated by replacing some of the gelling agents with new materials. Alcohols with moderate viscosity, namely maltose, sucrose, poly ethylene glycol 600, and 2-hydroxyethyl cellulose, were used to replace some gelling agents in this work. Among these alcohols, poly ethylene glycol 600 and 2-hydroxyethyl cellulose improved the cycle life of full cells. This improved cycle life was attributed to the inhibition of water electrolysis and the improved cycle life of the anode.
Keywords
Zn-air battery; Additive; Gelling agent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Deiss, F. Holzer, O. Haas, Electrochim. Acta, 2002, 47(25), 3995-4010.   DOI
2 T. Cohen-Hyams, Y. Ziengerman, Y. Ein-Eli, J. Power Sources, 2006, 157(1), 584-591.   DOI
3 J. Lee, B. Hwang, M.-S. Park, K. Kim, Electrochim. Acta, 2016, 199, 164-171.   DOI
4 P. Sapkota, H. Kim, J. Ind. Eng. Chem., 2009, 15(4), 445-450.   DOI
5 J. Dobryszycki, S. Biallozor, Corros. Sci., 2001, 43(7), 1309-1319.   DOI
6 Y.-C. Chang, G. Prentice, J. Electrochem. Soc., 1984, 131(7), 1465-1468.   DOI
7 Y. Jin, F. Chen, Y. Lei, X. Wu, ChemCatChem, 2015, 7(15), 2377-2383.   DOI
8 R. Renuka, L. Srinivasan, S. Ramamurthy, A. Veluchamy, N. Venkatakrishnan, J. Appl. Electrochem., 2001, 31(6), 655-661.   DOI
9 H. Yang, J. Power Sources, 2004, 128(1), 97-101.   DOI
10 L. Zhou, D. Zhou, W. Gan, Z. Zhang, Ionics, 2017, 23(12), 3469-3477.   DOI
11 M. Liang, H. Zhou, Q. Huang, S. Hu, W. Li, J. Appl. Electrochem., 2011, 41(8), 991-997.   DOI
12 C.W. Lee, K. Sathiyanarayanan, S.W. Eom, M.S. Yun, J. Power Sources, 2006, 160(2), 1436-1441.   DOI
13 M. Deyab, J. Power Sources, 2015, 280, 190-194.   DOI
14 B. Hwang, E.-S. Oh, K. Kim, Electrochim. Acta, 2016, 216, 484-489.   DOI
15 B. Li, X.M. Ge, F.W.T. Goh, T.S.A. Hor, D.S. Geng, G.J. Du, Z.L. Liu, J. Zhang, X.G. Liu, Y. Zong, Nanoscale, 2015, 7(5), 1830-1838.   DOI
16 K. Lopez, G. Park, H.J. Sun, J.C. An, S. Eom, J. Shim, J. Appl. Electrochem., 2015, 45(4), 313-323.   DOI
17 H.J. Hwang, W.S. Chi, O. Kwon, J.G. Lee, J.H. Kim, Y.G. Shul, ACS Appl. Mater. Inter., 2016, 8(39), 26298-26308.   DOI
18 R. Rathika, O. Padmaraj, S.A. Suthanthiraraj, Ionics, 2018, 24(1), 243-255.   DOI