Bioconjugation of Poly(poly(ethylene glycol) methacrylate)-Coated Iron Oxide Magnetic Nanoparticles for Magnetic Capture of Target Proteins

  • Kang, Sung-Min (Department of Chemistry, KAIST) ;
  • Choi, In-Sung S. (Department of Chemistry, KAIST) ;
  • Lee, Kyung-Bok (Biotechnology Fusion Research Team, Korea Basic Science Institute(KBSI)) ;
  • Kim, Yong-Seong (Department of Chemistry, Kyungnam University)
  • Published : 2009.04.25

Abstract

Chemical modification of magnetic nanoparticles(MNPs) with functional polymers has recently gained a great deal of attention because of the potential application of MNPs to in vivo and in vitro biotechnology. The potential use of MNPs as capturing agents and sensitive biosensors has been intensively investigated because MNPs exhibit good separation-capability and binding-specificity for biomolecules after suitable surface functionalization processes. In this work, we demonstrate an efficient method for the surface modification of MNPs, by combining surface-initiated polymerization and the subsequent conjugation of the biologically active molecules. The polymeric shells of non-biofouling poly(poly(ethylene glycol) methacrylate)(pPEGMA) were introduced onto the surface of MNPs by surface-initiated, atom transfer radical polymerization(SI-ATRP). With biotin as a model of biologically active compounds, the polymeric shells underwent successful post-functionalization via activation of the polymeric shells and bioconjugation of biotin. The resulting MNP hybrids showed a biospecific binding property for streptavidin and could be separated by magnet capture.

Keywords

References

  1. C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang, and B. Xu, J. Am. Chem. Soc., 126, 3392 (2004) https://doi.org/10.1021/ja031776d
  2. J. Perez, L. Josephson, and R. Weissleder, ChemBio Chem., 5, 261 (2004) https://doi.org/10.1002/cbic.200300730
  3. M. Zhao, L. Josephson, Y. Tang, and R. Weissleder, Angew. Chem. Int. Ed., 42, 1375 (2003) https://doi.org/10.1002/anie.200390352
  4. J. Perez, T. O''Loughin, F. Simeone, R. Weissleder, and L. Josephson, J. Am. Chem. Soc., 124, 2856 (2002) https://doi.org/10.1021/ja017773n
  5. N. Kohler, C. Sun, J. Wang, and M. Zhang, Langmuir, 21, 8858 (2005) https://doi.org/10.1021/la0503451
  6. A. K. Gupta and M. Gupta, Biomaterials, 26, 3995 (2005) https://doi.org/10.1016/j.biomaterials.2004.10.012
  7. I. Hilger, A. Kiessling, E. Romanus, R. Hiergeist, H. Rudolf, W. Andra, M. Roskos, W. Linss, P. Weber, W. Weitschies, and W. Kaiser, Nanotechnology, 15, 1027 (2004) https://doi.org/10.1088/0957-4484/15/8/029
  8. M. S. Martina, J. P. Fortin, C. Menager, O. Clement, G. Barratt, C. Grabielle-Madelmnt, F. Gazeau, V. Cabuil, and S. Lesieur, J. Am. Chem. Soc., 127, 10676 (2005) https://doi.org/10.1021/ja0516460
  9. Y.-M. Huh, Y.-w. Jun, H.-T. Song, S. Kim, J.-s. Choi, J.-H. Lee, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, and J. Cheon, J. Am. Chem. Soc., 127, 12387 (2005) https://doi.org/10.1021/ja052337c
  10. H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong, and S. Jon, J. Am. Chem. Soc., 128, 7383 (2006) https://doi.org/10.1021/ja061529k
  11. F. Hu, L. Wei, Z. Zhou, Y. Ran, Z. Li, and M. Gao, Adv. Mater., 18, 2553 (2006) https://doi.org/10.1002/adma.200600385
  12. K. El-Boubbou, C. Gruden, and X. Huang, J. Am. Chem. Soc., 129, 13392 (2007) https://doi.org/10.1021/ja076086e
  13. I. Raynal, P. Prigent, S. Peyramaure, A. Najid, C. Rebuzzi, and C. Corot, Invest. Radiol., 39, 56 (2004) https://doi.org/10.1097/01.rli.0000101027.57021.28
  14. W. J. Rogers and P. Basu, Atherosclerosis, 178, 67 (2005) https://doi.org/10.1016/j.atherosclerosis.2004.08.017
  15. J. Xie, C. Xu, Z. Xu, Y. Hou, K. L. Young, S. X. Wang, N. Pourmand, and S. Sun, Chem. Mater., 18, 5401 (2006) https://doi.org/10.1021/cm061793c
  16. O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J. Olson, and M. Zhang, Nano Lett., 5, 1003 (2005) https://doi.org/10.1021/nl0502569
  17. K. M. K. Selim, J.- H. Lee, S.-J. Kim, Z. Xing, I.-K. Kang, Y. Chang, and H. Guo, Macromol. Res., 14, 646 (2006) https://doi.org/10.1007/BF03218738
  18. M. S. Nikolic, M. Krack, V. Aleksandrovic, A. Kornowski, S. F${\ddot{o}}$rster, and H. Weller, Angew. Chem. Int. Ed., 45, 6577 (2006) https://doi.org/10.1002/anie.200602209
  19. R. Hong, N. O. Fischer, T. Emrick, and V. M. Rotello, Chem. Mater., 17, 4617 (2005) https://doi.org/10.1021/cm0507819
  20. X. Hong, J. Li, M. Wang, J. Xu, W. Guo, J. Li, Y. Bai, and T. Li, Chem. Mater., 16, 4022 (2004) https://doi.org/10.1021/cm049422o
  21. J. Tian, Y.-K. Feng, and Y.-S. Xu, Macromol. Res., 14, 209 (2006) https://doi.org/10.1007/BF03218511
  22. D. Ma, J. Guan, F. Normadin, S. Denommee, G. Enright, T. Veres, and B. Simard, Chem. Mater., 18, 1920 (2006) https://doi.org/10.1021/cm052067x
  23. Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, Nano Lett., 2, 183 (2002) https://doi.org/10.1021/nl015681q
  24. H. Shen, X. Yang, M. Gao, N. Jia, F. Wang, and N. Zhao, Chem. Mater., 19, 3090 (2007) https://doi.org/10.1021/cm062632b
  25. A.-H. Lu, E. L. Salabas, and F. Sch${\ddot{u}}$th, Angew. Chem. Int. Ed., 46, 1222 (2007) https://doi.org/10.1002/anie.200602866
  26. P.-C. Lin, P.-H. Chou, S.-H. Chen, H.-K. Liao, K.-Y. Wang, Y.-J. Chen, and C.-C. Lin, Small, 2, 485 (2006) https://doi.org/10.1002/smll.200500387
  27. Y. Wand, X. Teng, J.-S. Wang, and H. Yang, Nano Lett., 3, 789 (2003) https://doi.org/10.1021/nl034211o
  28. I. Garcia, A. Tercjak, N. E. Zafeiropoulos, M. Stamm, and I. Mondragon, J. Polym. Sci. Part A: Polym. Chem., 45, 4744 (2007) https://doi.org/10.1002/pola.22233
  29. S. M. Gravano, R. Dumas, K. Liu, and T. E. Patten, J. Polym. Sci. Part A: Polym. Chem., 43, 3675 (2007) https://doi.org/10.1002/pola.20823
  30. S. M. Kang, W.-J. Kim, and I. S. Choi, J. Nanosci. Nanotech., 8, 5347 (2008) https://doi.org/10.1166/jnn.2008.1286
  31. I. Garcia, N. E. Zafeiropoulos, A. Janke, A. Tercjak, A. Eceiza, M. Stamm, and I. Mondragon, J. Polym. Sci. Part A: Polym. Chem., 45, 925 (2007) https://doi.org/10.1002/pola.21854
  32. E. Marutani, S. Yamamoto, T. Ninjbadgar, Y. Tsujii, T. Fukuda, and M. Takano, Polymer, 45, 2231 (2004) https://doi.org/10.1016/j.polymer.2004.02.005
  33. R. A. Frimpong and J. Z. Hilt, Nanotechnology, 19, 175101 (2008) https://doi.org/10.1088/0957-4484/19/17/175101
  34. S. Parvin, J. Matsui, E. Sato, and T. Miyashita, J. Colloid Interf. Sci., 313, 128 (2007) https://doi.org/10.1016/j.jcis.2007.04.026
  35. M. Lattuada and T. A. Hatton, Langmuir, 23, 2158 (2007) https://doi.org/10.1021/la062092x
  36. F. Hu, K. G. Neoh, L. Cen, and E.-T. Kang, Biomacromolecules, 7, 809 (2006) https://doi.org/10.1021/bm050870e
  37. Q.-L. Fan, K.-G. Neoh, E.-T. Kang, B. Shuter, and S.-C. Wang, Biomaterials, 28, 5426 (2007) https://doi.org/10.1016/j.biomaterials.2007.08.039
  38. P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials, 23, 2043 (2002) https://doi.org/10.1016/S0142-9612(01)00334-9
  39. Y. K. Son, J. H. Kim, Y. S. Jeon, and D. J. Chung, Macromol. Res., 15, 527 (2007) https://doi.org/10.1007/BF03218826
  40. S. Y. Kim, S. H. Cho, Y. M. Lee, and L.-Y. Chu, Macromol. Res., 15, 646 (2007) https://doi.org/10.1007/BF03218945
  41. W. J. Kim and S. W. Kim, Macromol. Res., 15, 100 (2007) https://doi.org/10.1007/BF03218760
  42. T. Teranishi, I. Kiyokawa, and M. Miyake, Adv. Mater., 10, 596 (1998) https://doi.org/10.1002/(SICI)1521-4095(199805)10:8<596::AID-ADMA596>3.0.CO;2-Y
  43. W. P. Wuelfing, S. M. Gross, D. T. Miles, and R. W. Murray, J. Am. Chem. Soc., 120, 12696 (1998) https://doi.org/10.1021/ja983183m
  44. Park, K.-B. Lee, I. S. Choi, R. Langer, and S. Jon, Langmuir, 23, 10902 (2007) https://doi.org/10.1021/la7021903
  45. D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, J. Am. Chem. Soc., 129, 7661 (2007) https://doi.org/10.1021/ja071471p
  46. H. Lee, M. K. Yu, S. Park, S. Moon, J. J. Min, Y. Y. Jeong, H.-W. Kang, and S. Jon, J. Am. Chem. Soc., 129, 12739 (2007) https://doi.org/10.1021/ja072210i
  47. G. K. Jennings and E. L. Brantley, Adv. Mater., 16, 1983 (2004) https://doi.org/10.1002/adma.200400810
  48. M. Biesalski and J. Ruhe, Macromolecules, 36, 1222 (2003) https://doi.org/10.1021/ma020301o
  49. S. Qin, D. Qin, W. T. Ford, D. E. Resasco, and J. E. Herrera, J. Am. Chem. Soc., 126, 170 (2004) https://doi.org/10.1021/ja037937v
  50. Y. S. Chi, J. K. Lee, K.-B. Lee, D. J. Kim, and I. S. Choi, Bull. Korean Chem. Soc., 26, 361 (2005) https://doi.org/10.5012/bkcs.2005.26.3.361
  51. D. J. Kim, S. M. Kang, B. Kong, W.-J. Kim, H.-J. Paik, H. Choi, and I. S. Choi, Macromol. Chem. Phys., 206, 1941 (2005) https://doi.org/10.1002/macp.200500268
  52. S. M. Kang, K.-B. Lee, D. J. Kim, and I. S. Choi, Nanotechnology, 17, 4719 (2006) https://doi.org/10.1088/0957-4484/17/18/032
  53. Y.-W. Lee, S. M. Kang, K. R. Yoon, S.-P. Hong, B.-c. Yu, Y. S. Chi, H.-j. Paik, W. S. Yun, and I. S. Choi, Macromol. Res., 13, 356 (2005) https://doi.org/10.1007/BF03218466
  54. A. Hasneen, S. J. Kim, and H.-J. Paik, Macromol. Res., 15, 541 (2007) https://doi.org/10.1007/BF03218828
  55. B. Steitz, J. Salaklang, A. Finka, C. O’'Neil, H. Hofmann, and A. Petri-Fink, Bioconjugate Chem., 18, 1684 (2007) https://doi.org/10.1021/bc070100v
  56. B. S. Lee, J. K. Lee, W.-J. Kim, Y. H. Jung, S. J. Sim, J. Lee, and I. S. Choi, Biomacromolecules, 8, 744 (2007) https://doi.org/10.1021/bm060782+
  57. B. S. Lee, Y. S. Chi, K.-B. Lee, Y.-G. Kim, and I. S. Choi, Biomacromolecules, 8, 3922 (2007) https://doi.org/10.1021/bm7009043
  58. Y.-P. Kim, B. S. Lee, E. Kim, I. S. Choi, D. W. Moon, T. G. Lee, and H.-S. Kim, Anal. Chem., 80, 5094 (2008) https://doi.org/10.1021/ac800299d
  59. S. M. Kang, B. S. Lee, W.- J. Kim, I. S. Choi, M. Kil, K. y. Park, and E. Oh, Macromol. Res., in press
  60. C. J. Xu, K. M. Xu, H. W. Gu, R. K. Zheng, H. Liu, X. X. Zhang, Z. H. Guo, and B. Xu, J. Am. Chem. Soc., 126, 9938 (2004) https://doi.org/10.1021/ja0464802
  61. H. W. Gu, K. M. Xu, Z. M. Yang, C. K. Chang, and B. Xu, Chem. Commun., 4270 (2005)
  62. H. W. Gu, K. M. Xu, C. J. Xu, and B. Xu, Chem. Commun., 941 (2006)
  63. L. Wang, Z. M. Yang, J. H. Gao, K. M. Xu, H. W. Gu, B. Zhang, X. X. Zhang, and B. Xu, J. Am. Chem. Soc., 128, 13358 (2006) https://doi.org/10.1021/ja0651355
  64. K. R. Yoon, Y.-J. Koh, and I. S. Choi, Macromol. Rapid Commun., 24, 207 (2003) https://doi.org/10.1002/marc.200390025
  65. K. R. Yoon, Y. W. Lee, J. K. Lee, and I. S. Choi, Macromol. Rapid Commun., 25, 1510 (2004) https://doi.org/10.1002/marc.200400182
  66. K. R. Yoon, W.-J. Kim, and I. S. Choi, Macromol. Chem. Phys., 205, 1218 (2004) https://doi.org/10.1002/macp.200400077
  67. G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C. Y. Ryu, and P. M. Ajayan, J. Am. Chem. Soc., 125, 9258 (2003) https://doi.org/10.1021/ja0354418
  68. R. Matsuno, K. Yamamoto, H. Otsuka, and A. Takahara, Macomolecules, 37, 2203 (2004) https://doi.org/10.1021/ma035523g
  69. J. Lahann, M. Balcells, T. Rodon, J. Lee, I. S. Choi, K. F. Jensen, and R. Langer, Langmuir, 18, 3632 (2002) https://doi.org/10.1021/la011464t