Dimensional Stability of Poly(ethylene/propylene naphthalate) as a Flexible Substrate Application

유연 기판 소재로 응용을 위한 폴리(에틸렌/프로필렌 나프탈레이트)의 치수안정성 연구

  • Kim, Jae-Hyun (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Heo, Hye-Young (SKC Central R&D Center) ;
  • Jung, Tae-Houng (SKC Central R&D Center) ;
  • Han, Joon-Hee (SKC Central R&D Center) ;
  • Kang, Ho-Jong (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University)
  • 김재현 (광 에너지소재연구센터, 단국대학교 고분자공학과) ;
  • 허혜영 (SKE(주)) ;
  • 정태형 (SKE(주)) ;
  • 한준희 (SKE(주)) ;
  • 강호종 (광 에너지소재연구센터, 단국대학교 고분자공학과)
  • Published : 2009.07.25

Abstract

The 1,3-propane diol has been introduced as a co-monomer with ethylene glycol to polymerize the poly(ethylene/propylene naphthalate) in order to improve the dimensional stability of poly(ethylene naphthalate) for a possible flexible substrate material. Based on $^1H$-NMR results, it was found that poly (ethylene/propylene naphthalate) has been synthesised successfully. Introducing 1,3-propane diol resulted in the amorphous state in polyester as well as lowering of glass transition and thermal degradation temperature. Coexisting relatively longer propylene segment compared with ethylene in synthesized polyester caused less orientation behavior and reducing thermal expansion coefficient. This is a promising result for poly (ethylene/propylene naphthalate) to apply a flexible substrate.

폴리(에틸렌 나프탈레이트) 공중합체를 합성하기 위하여 에틸렌글리콜과 함께 1,3-프로판디올을 혼합사용하여 폴리(에틸렌/프로필렌 나프탈레이트)를 합성하고 이를 유연 기판 소재로 적용하기 위한 물성을 살펴보았다. NMR 실험 결과, 에틸렌과 프로필렌 segment가 함께 공존하는 폴리(에틸렌/프로필렌 나프탈레이트)가 합성되었음을 확인하였다. 에틸렌과 함께 프로필렌 segment가 존재하는 경우 합성된 폴리에스터의 결정화가 일어나지 않으며 유리전이온도와 열분해온도는 감소함을 알 수 있다. 합성된 폴리(에틸/프로필렌 나프탈레이트)의 주사슬에 에틸렌 보다 상대적으로 긴 프로필렌이 공존함에 따라 주사슬 배향이 어려워 열팽창계수가 감소함에 따라 합성 시 1,3-프로판디올 첨가에 따른 다소간의 내열온도 감소에도 저수축 유연기판 소재로 적용 가능함을 알 수 있었다.

Keywords

References

  1. Y. He and J. Kanicki, Appl. Phys. Lett., 76, 661 (1999) https://doi.org/10.1063/1.125854
  2. W. A. Gazotti and A. F. Nogueira, Syn. Metals, 108, 151 (2000) https://doi.org/10.1016/S0379-6779(99)00272-6
  3. K. Kudo, M. Yamashina, and T. Morizumi, Jpn. J. Appl. Phys., 23, 130 (1984) https://doi.org/10.1143/JJAP.23.1300
  4. A. Tsumura, H. Koezuka, and Y. Ando, Symth. Meth., 25, 11 (1998)
  5. T. N. Jackson, Y. Y. Lin, D. J. Gundlach, and H. Klauk, IEEE J. Sel. Top. Quant. Electron., 4, 101 (1998)
  6. I. J. Baek, J. H. Yoon, H. S, Lim, H. J. Chang, and H. Y. Park, J. of Microelectronics and Packaging Society, 12, 359 (2005)
  7. W. C. Chang, J. of KIEEME, 17, 1277 (2004) https://doi.org/10.4313/JKEM.2004.17.12.1277
  8. J. Y. Kim and S. I. Hong, Kor. J. Mater. Res., 19, 1 (2009) https://doi.org/10.3740/MRSK.2009.19.1.001
  9. M. Fonrodona, J. Escarre, and F. Villar, an International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion, 89, 37 (2005)
  10. H. Kaiju, A. Ono, and N. Kawaguchi, Appl. Surf. Sci., 255, 3706 (2009) https://doi.org/10.1016/j.apsusc.2008.10.036
  11. H. Schnell, Chemistry and Physics of Polycarbonates, Inter Science, New York, 1964
  12. A. M. Nasr and A. M. Sadik, Pure Appl. Opt., 3, 200 (2001) https://doi.org/10.1088/1464-4258/3/3/309
  13. G. Harsnyi, Sensor Review, 20, 98 (2000) https://doi.org/10.1108/02602280010319169
  14. J. Dybal, P. Schmidt, J. Baldrian, and J. Kratochvil, Macromolecules, 31, 6611 (1998) https://doi.org/10.1021/ma9807623
  15. S. J. Hwang, M. C. Tsengand, and J. R. Shu, Surf. Coat. Tech., 202, 3669 (2008) https://doi.org/10.1016/j.surfcoat.2008.01.016
  16. T. C. Yang, S. H. Tsai, and S. Wang, Compos. Sci. Technol., 62, 655 (2002) https://doi.org/10.1016/S0266-3538(02)00014-3
  17. Y. C. Lin, J. Y. Liand, and W. T. Yen, Appl. Surf. Sci., 254, 3262 (2008) https://doi.org/10.1016/j.apsusc.2007.11.006