• 제목/요약/키워드: photoelectrochemical water splitting

검색결과 69건 처리시간 0.027초

Investigation of Photoelectrochemical Water Splitting for Mn-Doped In2O3 Film

  • Sun, Xianke;Fu, Xinhe;You, Tingting;Zhang, Qiannan;Xu, Liuyang;Zhou, Xiaodong;Yuan, Honglei;Liu, Kuili
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.733-738
    • /
    • 2018
  • Undoped and Mn-doped $In_2O_3$ films were prepared by radiofrequency magnetron sputtering technique. The effects of Mn doping on the structural and optical properties of as-prepared films were investigated using X-ray diffraction, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. Mn doping can enhance the intensity of (222) peak in Mn-doped $In_2O_3$ thin film, indicating Mn dopant promotes preferred orientation of crystal growth along (222) plane. XPS analyses revealed that the doped Mn ions exist at + 2 oxidation states, substituting for the $In^{3+}$ sites in the $In_2O_3$ lattice. UV-Vis measurements show that the optical band gap $E_g$ decreases from 3.33 to 2.87 eV with Mn doping in $In_2O_3$, implying an increasing sp-d exchange interaction in the film. Our work demonstrates a practical means to manipulate the band gap energy of $In_2O_3$ thin film via Mn impurity doping, and significantly improves the photoelectrochemical activity.

MoS2 나노시트의 TiO2 나노선에 수직 성장을 통한 광전기화학반응 향상 (Enhanced Photoelectrochemical Reaction of MoS2 Nanosheets Vertically Grown on TiO2 Nanowires)

  • 서동범;김의태
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.92-96
    • /
    • 2021
  • We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 ㎛ and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 ℃ using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 ℃ using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.

열성장을 통해 형성된 산화구리의 광전기화학적 특성 (Photoelectrochemical property of thermal copper oxide thin films)

  • 최용선;유정은;이기영
    • 한국표면공학회지
    • /
    • 제55권4호
    • /
    • pp.215-221
    • /
    • 2022
  • In the present work, copper oxide thin films were formed by heat-treatment method with different temperatures and atmosphere, e.g., at 200 ~ 400 ℃; in air and Ar atmosphere. The morphological, electrical and optical properties of the thermally fabricated Cu oxide films were analyzed by SEM, XRD, and UV-VIS spectrometer. Thereafter, photoelectrochemical properties of the thermal copper oxide films were analyzed under solar light (AM 1.5, 100 mW/cm2). Conclusively, the highest photocurrent was obtained with Cu2O formed under the optimum annealing condition at 300 ℃ in air atmosphere. In addition, EIS results of Cu oxide formed in air atmosphere showed relatively low resistance and long electron life-time compared with Cu Oxide fabricated in Ar atmosphere at the same temperature. This is because heat-treatment in Ar atmosphere could not form Cu2O due to lack of oxygen, and thermally formed CuO at high temperature suppressed stability and conductivity of the Cu oxide.

Synthesis of $TiO_2$ nantubes coupled with ${\alpha}-Fe_2O_3$ nanoparticles and investigation of their photoelectrochemical activity

  • Mao, Aiming;Park, Jong-Hyeok;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2009
  • $TiO_2$ nanotube arraysdecorated with ${\alpha}-Fe_2O_3$ were prepared by forming a nanotube-like $TiO_2$ film on a Ti sheet using an anodization process, followed by electrochemical deposition treatment to decorate hematite (${\alpha}-Fe_2O_3$) nanoparticles on the $TiO_2$ nanotube arrays. The SEM and XRD results revealed that the ${\alpha}-Fe_2O_3$ nanoparticles were homogeneously embedded on the surface of the $TiO_2$ nanotube arrays. The activity of hydrogen production by photocatalytic water decomposition for the ${\alpha}-Fe_2O_3/TiO_2$ nanotube array composite was examined under visible light irradiation.

  • PDF

TiO2 박막 성장에 의한 광전기화학 물분해 효율 변화 (TiO2 Thin Film Growth Research to Improve Photoelectrochemical Water Splitting Efficiency)

  • 김성규;조유진;진선화;서동혁;김우병
    • 한국재료학회지
    • /
    • 제34권4호
    • /
    • pp.202-207
    • /
    • 2024
  • In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.

Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts

  • Jeon, Tae-Hwa;Choi, Sung-Kyu;Jeong, Hye-Won;Kim, Seung-Do;Park, Hyun-Woong
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권4호
    • /
    • pp.187-192
    • /
    • 2011
  • Photoelectrochemical performances of ZnO electrodes are enhanced by coupling with cobalt-based catalyst (CoPi) in phosphate electrolyte (pH 7). For this study, hexagonal pillar-shaped ZnO nanorods are grown on ZnO electrodes through a chemical bath deposition, onto which CoPi is deposited with different photodeposition times (10-30 min). A scanning electron microscopic study indicates that CoPi deposition does not induce any change of ZnO morphology and an energy-dispersive X-ray spectroscopic analysis shows that inorganic phosphate ions (Pi) exist on ZnO surface. Bare ZnO electrodes generate the current of ca. $0.36mA/cm^2$ at a bias potential of 0.5 V vs. SCE, whereas ZnO/CoPi (deposited for 10 min) has ca. 50%-enhanced current ($0.54mW/cm^2$) under irradiation of AM 1.5G-light ($400mW/cm^2$). The excess loading of CoPi on ZnO results in decrease of photocurrents as compared to bare ZnO likely due to limited electrolyte access to ZnO and/or CoPi-mediated recombination of photogenerated charge carriers. The primary role of CoPi is speculated to trap the photogenerated holes and thereby oxidize water into molecular oxygen via an intervalency cycle among Co(II), Co(III), and Co(IV).

산소발생용 Cobalt-phosphate (Co-pi) 촉매를 이용한 Gallium Nitride (GaN) 광전극의 광전기화학적 특성 (Photoelectrochemical Properties of Gallium Nitride (GaN) Photoelectrode Using Cobalt-phosphate (Co-pi) as Oxygen Evolution Catalyst)

  • 성채원;배효정;;하준석
    • 마이크로전자및패키징학회지
    • /
    • 제27권2호
    • /
    • pp.33-38
    • /
    • 2020
  • 광전기화학적 물분해에서 광전극으로 이용되는 GaN은 전해질에 대해 높은 안정성을 가지고 있으며 물의 산화 환원준위를 포함하고 있어 외부전압 없이 물분해가 가능하다. 그러나 GaN 광전극의 경우, 재료 자체의 효율이 낮아 상용화하기에는 부족한 실정이다. 본 연구에서는 광효율을 향상시키기 위해 Cobalt phosphate(Co-pi) 촉매를 광전기증착(Photoelectro-deposition)방법을 통하여 GaN 광전극에 도입하였다. Co-pi 촉매 증착 후 SEM, EDS, XPS분석을 진행하여 Co-pi의 증착 여부 및 증착 정도를 확인하고, Potentiostat를 이용해 PEC 특성을 분석하였다. SEM 이미지를 통해 Co-pi가 GaN 표면 위에 20~25 nm 사이즈의 클러스터 형태로 고르게 증착되어 있는 것을 확인하였다. EDS 및 XPS 분석을 통해 GaN 표면의 입자가 Co-pi임을 확인하였다. 이 후 측정된 PEC 특성에서 Co-pi를 증착 시킨 후 0.5 mA/㎠에서 0.75 mA/㎠로 향상된 광전류밀도 값을 얻을 수 있었다. 향상된 원인을 밝히기 위하여, 임피던스 및 Mott-Schottky 측정을 진행하였고, 측정 결과, 50.35 Ω에서 34.16 Ω으로 감소한 분극저항(Rp)과 증가된 donor 농도(ND) 값을 확인하였다. 물분해 전 후, 표면 성분을 분석한 결과 물분해 후에도 Co-pi가 남아있음으로써 Co-pi 촉매가 안정적이라는 것을 확인하였다. 이를 통해, Co-pi가 GaN의 효율 향상을 위한 촉매로서 효과가 있음을 확인하였고, 다른 광전극에 촉매로써 적용시켰을 경우, PEC 시스템의 효율을 향상시킬 수 있을 것으로 판단된다.

DC 열플라즈마를 이용하여 제조된 산화철 나노입자의 광 전기화학적 물분해 효율 증가연구 (Photoelectrochemical Performance of Hematite Nanoparticles Synthesized by a DC Thermal Plasma Process)

  • 이철호;이동은;김선규;유현석;최진섭
    • 공업화학
    • /
    • 제26권3호
    • /
    • pp.306-310
    • /
    • 2015
  • 본 연구에서는 광 전기화학적 물 분해 전극 재료로 이용되는 산화철($Fe_2O_3$, hematite)을 표면적을 크게 하기 위하여 DC 열플라즈마 장치를 이용하여 나노입자로 합성한 후 전극을 제조 시 binder의 종류 및 조성을 다르게 하여 염기성 전해질에서 각각의 물 분해 효율을 측정하는 실험을 진행하였으며 질소 도핑을 통해 질소가 산화철의 광전기화학 반응에 끼치는 영향을 확인하였다. 산화철 전극을 제조하여 solar simulator를 이용한 LSV 실험을 통해 각 전극의 onset potential 및 설정한 전압 범위에서의 최대 전류밀도를 측정하였으며, 전극의 내구성 평가를 위하여 LSV 실험을 반복하여 진행하였다. CMC (carboxymethyl cellulose)를 50 : 1의 비율로 섞어 binder로 이용한 산화철 전극이 가장 높은 전류밀도인 $12mA/cm^2$의 전류밀도를 나타내었고, CMC를 20 : 1 비율로 섞은 binder를 이용할 시 $3mA/cm^2$의 초기 전류밀도를 가지고 약 20회의 반복 실험을 견뎌내는 내구성을 나타내었다. 질소의 도핑이 산화철 나노입자의 광 전기 화학적 반응에 끼치는 영향은 미미한 것으로 확인되었다.

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

홀뮴 도핑된 TiO2를 이용한 광전기화학 수소 제조 (Photoelectrochemical Hydrogen Production with Holmium-doped TiO2)

  • 정현민;김민서;조혜경;주현규;강경수;이광복;김한성;윤재경
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.413-420
    • /
    • 2023
  • Holmium-doped TiO2 nanotubes (Ho-TNTs) were manufactured through anodization treatment and electrochemical deposition, and optimization experiments were conducted using various Holmium doping concentrations and time as variables. Surface as well as electrochemical characteristics were analyzed to study the prepared photocatalysts. Ho-TNTs were found to exist only in anatase phase through X-ray diffraction analysis. Ho-TNTs with 0.01 wt% 100 seconds shows a photocurrent density of 3.788 mA/cm2 and an effective photo-conversion efficiency (PCE) of 4.30%, which is more efficient than pure TiO2 nanotubes (pure-TNTs) (at bias potential 1.5 V vs. Hg/HgO). The photocatalytic activity of the aforementioned Ho-TNTs for hydrogen production was evaluated with the result of -29.20 µmol/h·cm2.