DOI QR코드

DOI QR Code

Enhanced Photoelectrochemical Reaction of MoS2 Nanosheets Vertically Grown on TiO2 Nanowires

MoS2 나노시트의 TiO2 나노선에 수직 성장을 통한 광전기화학반응 향상

  • Seo, Dong-Bum (Department of Materials Science & Engineering, Chungnam National University) ;
  • Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
  • 서동범 (충남대학교 공과대학 신소재공학과) ;
  • 김의태 (충남대학교 공과대학 신소재공학과)
  • Received : 2020.12.14
  • Accepted : 2021.01.27
  • Published : 2021.02.27

Abstract

We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 ㎛ and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 ℃ using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 ℃ using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.

Keywords

References

  1. K. T. Fountaine H. J. Lewerenz and H. A. Atwater, Nat. Commun., 7, 13706 (2016). https://doi.org/10.1038/ncomms13706
  2. S. Kim, H. Kim, S. K. Hong and D. Kim, Korean J. Mater. Res., 26, 604 (2016). https://doi.org/10.3740/MRSK.2016.26.11.604
  3. J. Joy, J. Mathew and S. C. George, Int. J. Hydrogen Energy, 43, 4804 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.099
  4. J. Park, N. D. Quang, H. Yang, S. Hong, T. T. Hien, C. Kim and D. Kim, Korean J. Mater. Res., 28, 261 (2018). https://doi.org/10.3740/MRSK.2018.28.5.261
  5. Y. Wang, W. Tian, C. Chen, W. Xu and L. Li, Adv. Funct. Mater., 29, 1809036 (2019). https://doi.org/10.1002/adfm.201809036
  6. H. Yun, S. Hong, D. Kim and C. Kim, Korean J. Mater. Res., 29, 1 (2019). https://doi.org/10.3740/MRSK.2019.29.1.1
  7. J. H. Park and H. Kim, Korean J. Mater. Res., 30, 239 (2020). https://doi.org/10.3740/MRSK.2020.30.5.239
  8. T. D. Nguyen, M. T. Man, M. H. Nguyen, D. B. Seo and E. T. Kim, Mater. Res. Express, 6, 085070 (2019). https://doi.org/10.1088/2053-1591/ab208a
  9. L. Zheng, F. Teng, X. Ye, H. Zheng and X. Fang, Adv. Energy Mater., 10, 1902355 (2020). https://doi.org/10.1002/aenm.201902355
  10. D. B. Seo, M. S. Kim, T. N. Trung and E. T. Kim, Electrochim. Acta, 364, 137164 (2020). https://doi.org/10.1016/j.electacta.2020.137164
  11. T. C. Dang, V. T. Dang, T. D. Nguyen, T. H. Truong, M. T. Man, T. T. H. Bui, T. K. C. Tran, D. L. Tran, P. D. Truong, C. K. Nguyen, V. C. Nguyen, D. B. Seo and E. T. Kim, Mater. Sci. Semicond. Process., 121, 105308 (2021). https://doi.org/10.1016/j.mssp.2020.105308
  12. H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B. K. Tay, C. Xue, X. Hu, S. T. Pantelides, W. Zhou and Z. Liu, Adv. Energy Mater., 6, 1600464 (2016). https://doi.org/10.1002/aenm.201600464
  13. A. B. Laursen, S. Kegnæs, S. Dahla and I. Chorkendorff, Energy Environ. Sci., 5, 5577 (2012). https://doi.org/10.1039/c2ee02618j
  14. D. B. Seo, S. Kim, T. N. Trung, D. Kim and E. T. Kim, J. Alloys Compd., 770, 686 (2019). https://doi.org/10.1016/j.jallcom.2018.08.151
  15. T. N. Trung, D. B. Seo, N. D. Quang, D. Kim and E. T. Kim, Electrochim. Acta, 260, 150 (2018). https://doi.org/10.1016/j.electacta.2017.11.089
  16. J. Yan, G. Wu, N. Guan, L. Li, Z. Lib and X. Cao, Phys. Chem. Chem. Phys., 15, 10978 (2013). https://doi.org/10.1039/c3cp50927c
  17. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Nano Lett., 11, 5111 (2011). https://doi.org/10.1021/nl201874w
  18. D. B. Seo, T. N. Trung, D. O. Kim, D. V. Duc, S. Hong, Y. Sohn, J. R. Jeong and E. T. Kim, Nano-Micro Lett., 12, 172 (2020). https://doi.org/10.1007/s40820-020-00512-3
  19. X. Zhang, C. Shao, X. Li, F. Miao, K. Wang, N. Lu and Y. Liu, J. Alloys Compd., 686, 137 (2016). https://doi.org/10.1016/j.jallcom.2016.05.336
  20. F. Nan, P. Li, J. Li, T. Cai, S. Ju and L. Fang, J. Phys. Chem. C, 122, 15055 (2018) https://doi.org/10.1021/acs.jpcc.8b01574