DOI QR코드

DOI QR Code

Investigation of Photoelectrochemical Water Splitting for Mn-Doped In2O3 Film

  • Sun, Xianke (School of Physics and Telecommunication Engineering, Zhoukou Normal University) ;
  • Fu, Xinhe (Department of Railway Police, Railway Police College) ;
  • You, Tingting (School of Physics and Telecommunication Engineering, Zhoukou Normal University) ;
  • Zhang, Qiannan (School of Physics and Telecommunication Engineering, Zhoukou Normal University) ;
  • Xu, Liuyang (School of Physics and Telecommunication Engineering, Zhoukou Normal University) ;
  • Zhou, Xiaodong (School of Physics and Telecommunication Engineering, Zhoukou Normal University) ;
  • Yuan, Honglei (School of Physics and Telecommunication Engineering, Zhoukou Normal University) ;
  • Liu, Kuili (School of Physics and Telecommunication Engineering, Zhoukou Normal University)
  • Received : 2018.03.26
  • Accepted : 2018.06.17
  • Published : 2018.11.10

Abstract

Undoped and Mn-doped $In_2O_3$ films were prepared by radiofrequency magnetron sputtering technique. The effects of Mn doping on the structural and optical properties of as-prepared films were investigated using X-ray diffraction, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. Mn doping can enhance the intensity of (222) peak in Mn-doped $In_2O_3$ thin film, indicating Mn dopant promotes preferred orientation of crystal growth along (222) plane. XPS analyses revealed that the doped Mn ions exist at + 2 oxidation states, substituting for the $In^{3+}$ sites in the $In_2O_3$ lattice. UV-Vis measurements show that the optical band gap $E_g$ decreases from 3.33 to 2.87 eV with Mn doping in $In_2O_3$, implying an increasing sp-d exchange interaction in the film. Our work demonstrates a practical means to manipulate the band gap energy of $In_2O_3$ thin film via Mn impurity doping, and significantly improves the photoelectrochemical activity.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Henan Province of China, Zhoukou Normal University

References

  1. Jiao, Y., Zhang, X., Zhai, J., Yu, X., Ding, L., Zhang, W. : Bottomgate amorphous $In_2O_3$ thin film transistors fabricated by magnetron sputtering. Electron. Mater. Lett. 9(3), 279 (2013) https://doi.org/10.1007/s13391-012-2198-4
  2. Meng, M., Wu, X., Ji, X., Gan, Z., Liu, L., Shen, J., Chu, P.K. : Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square $In_2O_3$ nanowires. Nano Res. 10(8), 2772 (2017) https://doi.org/10.1007/s12274-017-1481-y
  3. Kim, B.-J., Song, I.-G., Kim, J.-S. : $In_2O_3$-based micro gas sensor for detecting $NO_x$ gases. Electron. Mater. Lett. 10(2), 509 (2014) https://doi.org/10.1007/s13391-013-3133-z
  4. Fujishima, A., Honda, K. : Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 5358 (1972)
  5. Ţalu, S., Stach, S., Raoufi, D., Hosseinpanahi, F. : Film thickness effect on fractality of tin-doped $In_2O_3$ thin films. Electron. Mater. Lett. 11(5), 749 (2015) https://doi.org/10.1007/s13391-015-4280-1
  6. Zhang, M., Lin, Y., Mullen, T.J., Lin, W.F., Sun, L.D., Yan, C.H., Patten, T.E., Wang, D., Liu, G.Y. : Improving hematite's solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. J. Phys. Chem. Lett. 3(21), 3188 (2012) https://doi.org/10.1021/jz301444a
  7. Fominykh, K., Chernev, P., Zaharieva, I., Sicklinger, J., Stefanic, G., Doblinger, M., Muller, A., Pokharel, A., Bocklein, S., Scheu, C., Bein, T., Fattakhova-Rohlfing, D. : Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 9(5), 5180 (2015) https://doi.org/10.1021/acsnano.5b00520
  8. Liu, G., Wang, K., Gao, X., He, D., Li, J. : Fabrication of mesoporous $NiFe_2O_4$ nanorods as efficient oxygen evolution catalyst for water splitting. Electrochim. Act. 211, 871 (2016) https://doi.org/10.1016/j.electacta.2016.06.113
  9. Chang, H.-W., Fu, Y., Lee, W.-Y., Lu, Y.-R., Huang, Y.-C., Chen, J.-L., Chen, C.-L., Wu, C.C., Chen, J.-M., Lee, J.-F., Shen, S., Dong, C.-L. : Visible light-induced electronic structure modulation of Nb- and Ta-doped ${\alpha}$-$Fe_2O_3$ nanorods for effective photoelectrochemical water splitting. Nanotechnology 29(6), 064002 (2018) https://doi.org/10.1088/1361-6528/aa9d75
  10. Liu, W.-T., Wu, B.-H., Lai, Y.-T., Tai, N.-H., Perng, T.-P., Chen, L.-J. : Enhancement of water splitting by controlling the amount of vacancies with varying vacuum level in the synthesis system of $SnO_{2-x}/In_2O_{3-y}$ heterostructure as photocatalyst. Nano Energy 47, 18 (2018) https://doi.org/10.1016/j.nanoen.2018.02.037
  11. Lim, C.-H., Choi, S.-M., Seo, W.-S., Lee, M.-H., Lee, K.H., Park, H.-H. : A study of electrodes for thermoelectric oxides. Electron. Mater. Lett. 9(4), 445 (2013) https://doi.org/10.1007/s13391-013-0025-1
  12. Peng, H., Song, J.-H., Hopper, E.M., Zhu, Q., Mason, T.O., Freeman, A.J. : Possible n-type carrier sources in $In_2O_3(ZnO)_k$. Chem. Mater. 24(1), 106 (2015) https://doi.org/10.1021/cm202020g
  13. Khan, M.A., Khan, M., Ahamed, M., Alsalhi, M.S., Ahmed, T. : Crystallite structural, electrical and luminescent characteristics of thin films of $In_2O_3$ nanocubes synthesized by spray pyrolysis. Electron. Mater. Lett. 9(1), 53 (2013) https://doi.org/10.1007/s13391-012-2088-9
  14. Krysa, J., Zlamal, M., Kment, S., Brunclikova, M., Hubicka, Z. : $TiO_2$ and $Fe_2O_3$ films for photoelectrochemical water splitting. Molecules 20(1), 1046 (2015) https://doi.org/10.3390/molecules20011046
  15. Xu, R., Li, H., Zhang, W., Yang, Z., Liu, G., Xu, Z., Shao, H., Qiao, G. : The fabrication of $In_2O_3/In_2S_3/Ag$ nanocubes for efficient photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 18(4), 2710 (2016) https://doi.org/10.1039/C5CP05833C
  16. Zhang, Y., Zhang, J., Nie, M., Sun, K., Li, C., Yu, J. : Photoelectrochemical water splitting under visible light over anti-photocorrosive $In_2O_3$-coupling ZnO nanorod arrays photoanode. J. Nanopart. Res. 17(7), 322 (2015) https://doi.org/10.1007/s11051-015-2887-7
  17. Rajamanickam, N., Mariammal, R.N., Rajashabala, S., Ramachandran, K. : Effect of (Li, Mn) co-doping on structural, optical and magnetic properties of chunk-shaped nano ZnO. J. Alloy. Compd. 614(2), 151 (2014) https://doi.org/10.1016/j.jallcom.2014.06.081
  18. Wang, Y., Zhao, X., Duan, L., Wang, F., Niu, H., Guo, W., Ali, A. : Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method. Mat. Sci. Semicon. Proc. 29, 372 (2015) https://doi.org/10.1016/j.mssp.2014.07.034
  19. Wang, C.T., Liang, X.F., Zhang, Y., Liang, X., Zhu, Y.P., Qin, J., Gao, Y., Peng, B., Sun, N.X., Bi, L. : Controlling the magnetic anisotropy in epitaxial $Y_3Fe_5O_{12}$ films by manganese doping. Phys. Rev. B 96(22), 224403 (2017) https://doi.org/10.1103/PhysRevB.96.224403
  20. Singh, N.K., Choudhuri, B., Mondal, A., Dhar, J.C., Goswami, T., Saha, S., Ngangbam, C. : 2D like photonic crystal using $In_2O_3-SiO_x$ heterostructure nanocolumn arrays and humidity sensing. Electron. Mater. Lett. 10(5), 975 (2014) https://doi.org/10.1007/s13391-014-3325-1
  21. Maestre, D., MartÍnez de Velasco, I., Cremades, A., Amati, M., Piqueras, J. : Micro- and nanopyramids of manganese-doped indium oxide. J. Phys. Chem. C 114, 11748 (2010) https://doi.org/10.1021/jp103670b
  22. Farvid, S.S., Dave, N., Wang, T., Radovanovic, P.V. : Dopantinduced manipulation of the growth and structural metastability of colloidal indium oxide nanocrystals. J. Phys. Chem. C 113(36), 15928 (2009) https://doi.org/10.1021/jp905281k
  23. Jin, Y., Ren, Y., Cao, M.T., Ye, Z. : Doped colloidal ZnO nanocrystals. J. Nanomater 2012, 985326 (2012)
  24. An, Y., Xing, Y., Pan, F., Wu, Z., Liu, J. : Investigation of local structural environments and room-temperature ferromagnetism in (Fe, Cu)-codoped $In_2O_3$ diluted magnetic oxide films. Phys. Chem. Chem. Phys. 18(19), 13701-13709 (2016) https://doi.org/10.1039/C6CP01315E
  25. Sun, X., Jin, X., Li, M., Guo, R., An, Y., Liu, J. : Investigation of microstructure and photoluminescence of Mn and Co co-doped SiC films. Superlattice Microst. 65, 278 (2014) https://doi.org/10.1016/j.spmi.2013.11.010
  26. Okabayashi, J., Ono, K., Mizuguchi, M., Oshima, M. : X-ray absorption spectroscopy of transition-metal doped diluted magnetic semiconductors $Zn_{1-x}M_xO$. J. Appl. Phys. 95, 3573 (2004) https://doi.org/10.1063/1.1652248
  27. Panigrahy, B., Aslam, M., Bahadur, D. : Aqueous synthesis of Mn- and Co-Doped ZnO nanorods. J. Phys. Chem. C 114(27), 11758 (2010) https://doi.org/10.1021/jp102163b
  28. Ilton, E.S., Post, J.E., Heaney, P.J., Ling, F.T., Kerisit, S.N. : XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475 (2016) https://doi.org/10.1016/j.apsusc.2015.12.159
  29. Apostolov, A.T., Apostolova, I.N., Wesselinow, J.M. : Theoretical study of room temperature ferromagnetism and band gap energy of pure and ion doped $In_2O_3$ nanoparticles. J. Magn. Magn. Mater. 456, 263 (2018) https://doi.org/10.1016/j.jmmm.2018.02.045
  30. Khatoon, S., Coolahan, K., Lofland, S.E., Ahmad, T. : Optical and magnetic properties of solid solutions of $In_{2-x}Mn_xO_3$ (0.05, 0.10 and 0.15) nanoparticles. J. Alloys Compd. 545, 162 (2012) https://doi.org/10.1016/j.jallcom.2012.08.038

Cited by

  1. Drop‐casted Platinum Nanocube Catalysts for Hydrogen Evolution Reaction with Ultrahigh Mass Activity vol.14, pp.12, 2018, https://doi.org/10.1002/cssc.202100613