Browse > Article
http://dx.doi.org/10.14478/ace.2015.1027

Photoelectrochemical Performance of Hematite Nanoparticles Synthesized by a DC Thermal Plasma Process  

Lee, Chulho (Department of Chemistry and Chemical Engineering, Inha University)
Lee, Dongeun (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Sunkyu (Department of Chemistry and Chemical Engineering, Inha University)
Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.26, no.3, 2015 , pp. 306-310 More about this Journal
Abstract
In this research, hematite nanoparticles were synthesized by DC thermal plasma process to increase the overall surface area. The effect of binders on hematite electrodes was investigated by changing the type and composition of binders when preparing electrodes. Nitrogen gas was also added to the DC thermal plasma process in order to dope the hematite with N for enhancing photoelectrochemical properties of hematite nanoparticles. The efficiency of water splitting reaction was measured by linear sweep voltammetry (LSV) under solar simulator. In LSV measurements, the onset potential and maximum current density at a fixed voltage were measured. The durability of electrodes was checked by repeating LSV measurements. CMC (carboxymethyl cellulose) binder with 50 : 1 composition exhibits the highest current density of $12mA/cm^2$ and CMC binder with 20 : 1 composition, showing the initial current density of $3mA/cm^2$, endures 20 times of repetitive LSV measurements. Effects of nitrogen doping on hematite nanoparticles were proven to be insignificant.
Keywords
Hematite; Water splitting; Photoelectrochemistry; Binder; Oxygen evolution reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, 253-278 (2009).   DOI
2 Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature, 414, 625-627 (2001).   DOI   ScienceOn
3 X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110, 6503-6570 (2010).   DOI   ScienceOn
4 F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., 20, 35-54 (2008).   DOI   ScienceOn
5 G. K. Mor, K. Shankar, M. Paulos, O. K. Varghese, and C. A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano. Lett., 5, 191-195 (2005).   DOI   ScienceOn
6 G. Liu, L. Wang, H. G. Yang, H. M. Cheng, and G. Q. Lu, Titania-based photocatalysts-crystal growth, doping and heterostructuring, J. Mater. Chem., 20, 831-843 (2010).   DOI
7 R. Abe, T. Takata, H. Sugihara, and K. Domen, Photocatalytic overall water splitting under visible light by TaON and $WO_3$ with an $IO_3^-/I^-$ shuttle redox mediator, Chem. Commun., 30, 3829-3831 (2005).
8 A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting, Adv. Funct. Mater., 19, 1849-1856 (2009).   DOI   ScienceOn
9 K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. Tan, M. A. Jassim, and J. Turner, Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films, J. Power Sources, 176, 387-392 (2008).   DOI   ScienceOn
10 M. Sathish, B. Viswanathan, and R. P. Viswanath, Alternative synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting, Int. J. Hydrogen Energ., 31, 891-898 (2006).   DOI   ScienceOn
11 Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, and J. R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc., 133, 10878-10884 (2011).   DOI   ScienceOn
12 K. Sivula, F. L. Formal, and M. Gratzel, Solar water splitting: progress using hematite (${\alpha}-Fe_2O_3$) photoelectrodes, Chem. Sus. Chem., 4, 432-449 (2011).   DOI
13 M. T. Mayer, Y. Lin, G. Yuan, and D. Wang, Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite, Accounts Chem. Res., 46, 1558-1566 (2013).   DOI   ScienceOn
14 Y. Ling, G. Yuan, S. Sheehan, S. Zhou, and D. Wang, Hematite-based solar water splitting: challenges and opportunities, Energ. Environ. Sci., 4, 4862-4869 (2011).   DOI   ScienceOn
15 A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE T. Plasma Sci., 26, 1685-1694 (1998).   DOI   ScienceOn
16 F. L. Formal, M. Gratzel, and K. Sivula, Controlling photoactivity in ultrathin hematite films for solar water-splitting, Adv. Funct. Mater., 20, 1099-1107 (2010).   DOI   ScienceOn
17 S. Shen, Toward efficient solar water splitting over hematite photoelectrodes, J. Mater. Res., 29, 29-46 (2014).   DOI
18 P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 396, 152-155 (1998).   DOI
19 H. M. Yang, W. K. Nam, and D. W. Park, Production of nano-sized carbon black from hydrocarbon by a thermal plasma, J. Nanosci. Nanotechno., 7, 3744-3749 (2007).   DOI   ScienceOn
20 S. J. Kim and D. W. Park, Preparation of ZnO nanopowders by thermal plasma and characterization of photo-catalytic property, Appl. Surf. Sci., 255, 5363-5367 (2009).   DOI   ScienceOn
21 J. W. Park, D. W. Kim, H. S. Seon, K. S. Kim, and D. W. Park, Synthesis of carbon-doped TiO2 nanoparticles using CO2 decomposition by thermal plasma, Thin Solid Films, 518, 4113-4116 (2010).   DOI   ScienceOn
22 S. H. Lee, S. M. Oh, and D. W. Park, Preparation of silver nanopowder by thermal plasma, Mat. Sci. Eng. C-Bio. S., 27, 1286-1290 (2007).   DOI   ScienceOn
23 C. Sasso, D. Beneventi, E. Zeno, M. P. Conil, D. Chaussy, and M. N. Belgacem, Carboxymethylcellulose: a conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium, Synthetic Met., 161, 397-403 (2011).   DOI   ScienceOn