DOI QR코드

DOI QR Code

TiO2 Thin Film Growth Research to Improve Photoelectrochemical Water Splitting Efficiency

TiO2 박막 성장에 의한 광전기화학 물분해 효율 변화

  • Seong Gyu Kim (Department of Energy Engineering, Dankook University) ;
  • Yu Jin Jo (Department of Energy Engineering, Dankook University) ;
  • Sunhwa Jin (Department of Energy Engineering, Dankook University) ;
  • Dong Hyeok Seo (Department of Foundry Engineering, Dankook University) ;
  • Woo-Byoung Kim (Department of Energy Engineering, Dankook University)
  • 김성규 (단국대학교 에너지공학과) ;
  • 조유진 (단국대학교 에너지공학과) ;
  • 진선화 (단국대학교 에너지공학과) ;
  • 서동혁 (단국대학교 파운드리공학과) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2024.03.11
  • Accepted : 2024.03.26
  • Published : 2024.04.27

Abstract

In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1A2C1006148) and This research was supported by Nano·Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2009-0082580).

References

  1. N. Panwar, R. Kothari and V. Tyagi, Renewable Sustainable Energy Rev., 16, 1801 (2012). 
  2. N. Abas, A. Kalair and N. Khan, Futures, 69, 31 (2015). 
  3. P. P. Edwards, V. L. Kuznetsov and W. I. David, Philos. Trans. R. Soc., A, 365, 1043 (2007). 
  4. A. Zuttel, A. Remhof, A. Borgschulte and O. Friedrichs, Philos. Trans. R. Soc., A, 368, 3329 (2010). 
  5. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci., 103, 15729 (2006). 
  6. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 110, 6446 (2010). 
  7. S. Chen, T. Takata and K. Domen, Nat. Rev. Mater., 2, 17050 (2017). 
  8. W. Yang, R. R. Prabhakar, J. Tan, S. D. Tilley and J. Moon, Chem. Soc. Rev., 48, 4979 (2019). 
  9. L. J. Minggu, W. R. W. Daud and M. B. Kassim, Int. J. Hydrogen Energy, 35, 5233 (2010). 
  10. T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 43, 7520 (2014). 
  11. M. T. Mayer, C. Du and D. Wang, J. Am. Chem. Soc., 134, 12406 (2012). 
  12. M. Tayebi and B.-K. Lee, Renewable Sustainable Energy Rev., 111, 332 (2019). 
  13. Z. Zhang and P. Wang, J. Mater. Chem., 22, 2456 (2012). 
  14. D. H. Seo, K.-R. Park and W.-B. Kim, J. Mater. Chem. A, 12, 6028 (2024). 
  15. J. Oh, T. G. Deutsch, H.-C. Yuan and H. M. Branz, Energy Environ. Sci., 4, 1690 (2011). 
  16. A. B. Murphy, P. R. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne and J. A. Glasscock, Int. J. Hydrogen Energy, 31, 1999 (2006). 
  17. L. Madriz, J. Tata, D. Carvajal, O. Nunez, B. R. Scharifker, J. Mostany, C. Borras, F. M. Cabreri zo and R. Vargas, Renewable Energy, 152, 974 (2020). 
  18. R. Siavash Moakhar, S. M. Hosseini-Hosseinabad, S. Masudy-Panah, A. Seza, M. Jalali, H. Fallah-Arani, F. Dabir, S. Gholipour, Y. Abdi and M. Bagheri-Hariri, Adv. Mater., 33, 2007285 (2021). 
  19. J. P. Schmidt, H. Y. Tran, J. Richter, E. Ivers-Tiffee and M. Wohlfahrt-Mehrens, J. Power Sources, 239, 696 (2013). 
  20. Y. Zeng, M. Zhao, Z. Huang, W. Zhu, J. Zheng, Q. Jiang, Z. Wang and H. Liang, Adv. Energy Mater., 12, 2201713 (2022). 
  21. J. Wang, G. Ni, W. Liao, K. Liu, J. Chen, F. Liu, Z. Zhang, M. Jia, J. Li and J. Fu, Angew. Chem., Int. Ed., 62, e202217026 (2023). 
  22. J. E. Katz, T. R. Gingrich, E. A. Santori and N. S. Lewis, Energy Environ. Sci., 2, 103 (2009). 
  23. M. M. Momeni and P. Zeinali, J. Electroanal. Chem., 891, 115283 (2021). 
  24. J. Ran, J. Zhang, J. Yu, M. Jaroniec and S. Z. Qiao, Chem. Soc. Rev., 43, 7787 (2014). 
  25. T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi and K. Domen, Nature, 581, 411 (2020). 
  26. S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. Pijpers and D. G. Nocera, Science, 334, 645 (2011). 
  27. Z. Wang, C. Li and K. Domen, Chem. Soc. Rev., 48, 2109 (2019). 
  28. F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam and R. van de Krol, Nat. Commun., 4, 2195 (2013). 
  29. R. Liu, Z. Zheng, J. Spurgeon and X. Yang, Energy Environ. Sci., 7, 2504 (2014). 
  30. P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra and I. S. Roqan, Nano Lett., 17, 1520 (2017). 
  31. S. Anantharaj and S. Noda, ChemElectroChem, 7, 2297 (2020). 
  32. Q. Gui, Z. Xu, H. Zhang, C. Cheng, X. Zhu, M. Yin, Y. Song, L. Lu, X. Chen and D. Li, ACS Appl. Mater. Interfaces, 6, 17053 (2014). 
  33. W. Yang, T. Moehl, E. Service and S. D. Tilley, Adv. Energy Mater., 11, 2003569 (2021).