Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.4.215

Photoelectrochemical property of thermal copper oxide thin films  

Choi, Yongseon (Department of Chemistry and Chemical Engineering, Inha University)
Yoo, JeongEun (Department of Chemistry and Chemical Engineering, Inha University)
Lee, Kiyoung (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.4, 2022 , pp. 215-221 More about this Journal
Abstract
In the present work, copper oxide thin films were formed by heat-treatment method with different temperatures and atmosphere, e.g., at 200 ~ 400 ℃; in air and Ar atmosphere. The morphological, electrical and optical properties of the thermally fabricated Cu oxide films were analyzed by SEM, XRD, and UV-VIS spectrometer. Thereafter, photoelectrochemical properties of the thermal copper oxide films were analyzed under solar light (AM 1.5, 100 mW/cm2). Conclusively, the highest photocurrent was obtained with Cu2O formed under the optimum annealing condition at 300 ℃ in air atmosphere. In addition, EIS results of Cu oxide formed in air atmosphere showed relatively low resistance and long electron life-time compared with Cu Oxide fabricated in Ar atmosphere at the same temperature. This is because heat-treatment in Ar atmosphere could not form Cu2O due to lack of oxygen, and thermally formed CuO at high temperature suppressed stability and conductivity of the Cu oxide.
Keywords
Photoelectrochemistry; Heat-treatment; Copper oxide; Water splitting; Thermal oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Damyanova, B. Pawelec, K. Arishtirova, J. L. G. Fierro, Ni-based catalysts for reforming of methane with CO2, Int. J. Hydrog. Energy, 37 (2012) 15966-15975.   DOI
2 M. Kim, N. Shin, J. Lee, K. Lee, Y. T. Yu, J. Choi, Photoelectrochemical water oxidation in anodic TiO2 nanotubes array: Importance of mass transfer, Electrochem. Commun., 132 (2021) 107133.
3 E. Park, S. S. Patil, H. Lee, V. S. Kumbhar, K. Lee, Photoelectrochemical H2 evolution on WO3/BiVO4 enable by single-crystalline TiO2 overlayer modulations, Nanoscale, 40 (2021) 16932-16941.
4 V. S. Kumbhar, H. Lee, J. Lee, K. Lee, Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting, J. Colloid Interface Sci., 557 (2019) 478-487.   DOI
5 C. Li, J. He, Y. Xiao, Y. Li, J. J. Delaunay, Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting, Energy Environ. Sci., 13 (2020) 3269-3306.   DOI
6 J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Gime'nez, Electron lifetime in dye-sensitized solar cells: Theory and interpretation of measurements, J. Phys. Chem. C, 113 (2009) 17278-17290.   DOI
7 H. Derin, K. Kantarli, Optical characterization of thin thermal oxide films on copper by ellipsometry, Appl. Phys. A, 75 (2002) 391-395.   DOI
8 J. D. Holladay, J. Hu, D. L. King, Y. Wang, An overview of hydrogen production technologies, Catal. Today, 139 (2009) 244-260.   DOI
9 H. Qi, J. Wolfe, D. Fichou, Z. Chen, Cu2O photocathode for low bias photoelectrochemical water splitting enabled by NiFe-layered double hydroxide co-catalyst, Sci. Rep., 6 (2016) 30882.
10 C. Cao, X. Xie, Y. Zeng, S. Shi, G. Wang, L. Yang, C. Wang, S. Lin, Highly efficient and stable p-type ZnO nanowires with piezotronic effect for photoelectrochemical water splitting, Nano Energy, 61 (2019) 550-558.   DOI
11 Y. Choi, H. Lee, V. S. Kumbhar, Y. Choi, J. Kim, K. Lee, Enhancement of photoelectrochemical properties with α-Fe2O3 on surface modified FTO substrates, Ceram. Int., 12 (2020) 20012-20019.
12 R. Liu, W. D. Yang, L. S. Qiang, H. Y. Liu, Conveniently fabricated heterojunction ZnO/TiO2 electrodes using TiO2 nanotube arrays for dye-sensitized solar cells, J. Power Sources, 220 (2012) 153-159.   DOI
13 L. R. Nagappagari, S. S. Patil, J. Lee, E. Park, Y. T. Yu, K. Lee, Enhanced photoelectrochemical activity using NiCo2S4 / spaced TiO2 nanorod heterojunction, Ceram. Int., 48 (2022) 920-930.   DOI
14 L. R. Nagappagari, J. Lee, H. Lee, B. Jeong, K. Lee, Energy and environmental applications of Sn4+/Ti4+ doped α-Fe2O3@Cu2O/CuO photoanode under optimized photoelectrochemical conditions, Environ. Pollut., 271 (2021) 116318.
15 M. Balik, V. Bulut, I. Y. Erdogan, Optical, structural and phase transition properties of Cu2O, CuO and Cu2O/CuO: Their photoelectrochemical sensor applications, Int. J. Hydrog., 44 (2019) 18744-18755.   DOI
16 H. Park, W. Kim, H. Jeong, J. Lee, H. Kim, W. Choi, Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays. Sol. Energy Mater. Sol. Cells, 95 (2011) 184-189.   DOI
17 F. F. Abdi, R. van de Krol, Nature and light dependence of bulk recombination in co-pi catalyzed BiVO4 photoanodes, J. Phys. Chem. C, 116 (2012) 9398-9404.   DOI