Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.2.92

Enhanced Photoelectrochemical Reaction of MoS2 Nanosheets Vertically Grown on TiO2 Nanowires  

Seo, Dong-Bum (Department of Materials Science & Engineering, Chungnam National University)
Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.2, 2021 , pp. 92-96 More about this Journal
Abstract
We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 ㎛ and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 ℃ using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 ℃ using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.
Keywords
$TiO_2$; $MoS_2$; photoelectrochemical; heterostructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Park and H. Kim, Korean J. Mater. Res., 30, 239 (2020).   DOI
2 T. D. Nguyen, M. T. Man, M. H. Nguyen, D. B. Seo and E. T. Kim, Mater. Res. Express, 6, 085070 (2019).   DOI
3 L. Zheng, F. Teng, X. Ye, H. Zheng and X. Fang, Adv. Energy Mater., 10, 1902355 (2020).   DOI
4 D. B. Seo, M. S. Kim, T. N. Trung and E. T. Kim, Electrochim. Acta, 364, 137164 (2020).   DOI
5 T. C. Dang, V. T. Dang, T. D. Nguyen, T. H. Truong, M. T. Man, T. T. H. Bui, T. K. C. Tran, D. L. Tran, P. D. Truong, C. K. Nguyen, V. C. Nguyen, D. B. Seo and E. T. Kim, Mater. Sci. Semicond. Process., 121, 105308 (2021).   DOI
6 H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B. K. Tay, C. Xue, X. Hu, S. T. Pantelides, W. Zhou and Z. Liu, Adv. Energy Mater., 6, 1600464 (2016).   DOI
7 A. B. Laursen, S. Kegnæs, S. Dahla and I. Chorkendorff, Energy Environ. Sci., 5, 5577 (2012).   DOI
8 D. B. Seo, S. Kim, T. N. Trung, D. Kim and E. T. Kim, J. Alloys Compd., 770, 686 (2019).   DOI
9 T. N. Trung, D. B. Seo, N. D. Quang, D. Kim and E. T. Kim, Electrochim. Acta, 260, 150 (2018).   DOI
10 J. Yan, G. Wu, N. Guan, L. Li, Z. Lib and X. Cao, Phys. Chem. Chem. Phys., 15, 10978 (2013).   DOI
11 G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Nano Lett., 11, 5111 (2011).   DOI
12 D. B. Seo, T. N. Trung, D. O. Kim, D. V. Duc, S. Hong, Y. Sohn, J. R. Jeong and E. T. Kim, Nano-Micro Lett., 12, 172 (2020).   DOI
13 X. Zhang, C. Shao, X. Li, F. Miao, K. Wang, N. Lu and Y. Liu, J. Alloys Compd., 686, 137 (2016).   DOI
14 H. Yun, S. Hong, D. Kim and C. Kim, Korean J. Mater. Res., 29, 1 (2019).   DOI
15 K. T. Fountaine H. J. Lewerenz and H. A. Atwater, Nat. Commun., 7, 13706 (2016).   DOI
16 S. Kim, H. Kim, S. K. Hong and D. Kim, Korean J. Mater. Res., 26, 604 (2016).   DOI
17 F. Nan, P. Li, J. Li, T. Cai, S. Ju and L. Fang, J. Phys. Chem. C, 122, 15055 (2018)   DOI
18 J. Joy, J. Mathew and S. C. George, Int. J. Hydrogen Energy, 43, 4804 (2018).   DOI
19 J. Park, N. D. Quang, H. Yang, S. Hong, T. T. Hien, C. Kim and D. Kim, Korean J. Mater. Res., 28, 261 (2018).   DOI
20 Y. Wang, W. Tian, C. Chen, W. Xu and L. Li, Adv. Funct. Mater., 29, 1809036 (2019).   DOI