Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.4.282

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation  

Cho, Ha Eun (Department of Chemistry Education and Optoelectronics Convergence Research Center, Chonnam National University)
Yun, Gun (Department of Chemistry Education and Optoelectronics Convergence Research Center, Chonnam National University)
Arunachalam, Maheswari (Department of Chemistry, Chonnam National University)
Ahn, Kwang-Soon (School of Chemical Engineering, Yeungnam University)
Kim, Chung Soo (Analysis & Certification Center, Korea Institute of Ceramic Engineering and Technology)
Lim, Dong-Ha (Korea Institute of Industrial Technology)
Kang, Soon Hyung (Department of Chemistry Education and Optoelectronics Convergence Research Center, Chonnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.4, 2018 , pp. 282-291 More about this Journal
Abstract
The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.
Keywords
Photoelectrochemical water splitting; $CuWO_4$; Heterojunction; Inverse opal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Surendranath, D. G. Nocera, Progess in Inorganic Chemistry, 1st ed, Ed., John Wiley & sons Inc. Hoboken, NJ, 2012.
2 R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev, 2014, 114(19), 9824-9852.   DOI
3 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev, 2010, 110(11), 6446-6473.   DOI
4 A. Fujishima, K. Honda, Nature, 1972, 238(5358), 37-38.   DOI
5 M. Balamurugan, G. Yun, K. -S. Ahn, S. H. Kang, J. phys. chem. C, 2018, 121, 7625-7634.
6 K. Sivula, F. L. Formal, M. Gratzel, ChemSusChem, 2011, 4(4), 432-449.   DOI
7 C. A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Chem. Soc. Rev, 2013, 42(6), 2228-2246.   DOI
8 K. M. Nam, E. A. Cheon, W. J. Shin, A. J. Bard, Langmuir, 2015, 31(39), 10897-10903.   DOI
9 O. Yu. Khyzhun, V. L. Bekenev, Yu. M. Solonin, J. Alloys. Comped, 2009, 480, 184-189.   DOI
10 S. Chen, M. N. Hossain, A. Chen, ChemElectroChem, 2018, 5(3), 523-530.   DOI
11 C. R. Lhermitte, B. M. Bartlett, Acc. Chem. Res, 2016, 49(6), 1121-1129.   DOI
12 D. Bohra, W. A. Smith, Phys. Chem. Chem. Phys, 2015, 17(15), 9857-9866.   DOI
13 J. E. Yourey, B. M. Bartlett, J. Mater. Chem, 2011, 21(21), 7651-7660.   DOI
14 M. Davi, A. Drichel, M. Mann, T. Scholz, F. Schrader, A. Rokicinska, P. Kustrowski, R. Dronskowski, A. Slabon, J. Phys. Chem. C, 2017, 121(47), 26265-26274.   DOI
15 G. Yun, M. Balamurugan, H. -S. Kim, K. -S. Ahn, S. H. Kang, J. Phys. Chem. C, 2016, 120(11), 5906-5915.   DOI
16 Y. Gun, G. Y. Song, V. H. Quy, J. Heo, H. Lee, K. -S. Ahn, S. H. Kang, ACS Appl. Mater. Interfaces, 2015, 7, 20292-20303.   DOI
17 R. C. Schroden, M. Al-Daous, C. F. Blanford, A. Stein, Chem. Mater, 2002, 14(8), 3305-3315.   DOI
18 J. Ruiz-Fuertes, D. Errandonea, A. Segura, F. J. Manj?n, Z. Zhu, C. Y. Tu, High Pressure Res., 2008, 28(4), 565-570.   DOI
19 M. Zhou, Z. Liu, X. Li, Z. Liu, Ind. Eng. Chem. Res., 2018, 57(18), 6210-6217.   DOI
20 J. Li, N. Wu, Catal. Sci. Technol, 2015, 5, 1360-1384.   DOI
21 S. K. Pilli, T. G. Deutsch, T. E. Furtak, L. D. Brown, J. A. Turner, A. M. Herring, Phys. Chem. Chem. Phys, 2013, 15(9), 3273-3278.   DOI