• Title/Summary/Keyword: phase and frequency detector

Search Result 203, Processing Time 0.03 seconds

A Fractional-N Phase Locked Loop with Multiple Phase Frequency Detector (Fractional 스퍼 감쇄 위상/주파수검출기를 이용한 fractional-N 주파수 합성기)

  • Choi, Young-Shig;Choi, Hyek-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2444-2450
    • /
    • 2011
  • In this paper, we propose the low fractional spur phase-locked loop(PLL) with multiple phase-frequency detector(PFD). The fractional spurs are suppressed by using a new PFD. The new PFD architecture with two different edge detection methods is used to suppress the fractional spur by limiting a maximum width of the output signals of PFD. The proposed PLL was simulated by HSPICE using a 0.35m CMOS parameters. The simulation results show that the proposed PLL is able to suppress fractional spurs with fast locking.

Design of Low voltage High speed Phase Locked Loop (고속 저전압 위상 동기 루프(PLL) 설계)

  • Hwang, In-Ho;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.267-269
    • /
    • 2007
  • PLL(Phase Locked Loop) are widely used circuit technique in modern electronic systems. In this paper, We propose the low voltage and high speed PLL. We design the PFD(Phase Frequency Detector) by using TSPC (True Single Phase Clock) circuit to improve the performance and solve the dead-zone problem. We use CP(Charge Pump} and LP(Loop filter) for Negative feedback and current reusing in order to solve current mismatch and switch mismatch problem. The VCO(Voltage controlled Oscillator) with 5-stage differential ring oscillator is used to exact output frequency. The divider is implemented by using D-type flip flops asynchronous dividing. The frequency divider has a constant division ratio 32. The frequency range of VCO has from 200MHz to 1.1GHz and have 1.7GHz/v of voltage gain. The proposed PLL is designed by using 0.18um CMOS processor with 1.8V supply voltage. Oscillator's input frequency is 25MHz, VCO output frequency is 800MHz and lock time is 5us. It is evaluated by using cadence spectra RF tools.

  • PDF

Design and Implementation of Broadband Power Detector for Six-port Direct Conversion Receiver (Six-port 직접 변환 수신을 위한 광대역 Power detector 설계 제작)

  • Lee, Yong-Ju;Kim, Yeong-Wan;Park, Dong-Cheol
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • The broadband power detector for power amplitude envelope detection of the direct-conversion Six-port output signal was designed and implemented in this paper. The power detector should be linearly operated to produce the linear amplitude and phase signal for input RF signals in required broadband frequency range. The power detector should be designed under conditions of matching circuit with low VSWR, which protect unbalanced phase signal from reflection signal due to mismatch between the output port of a six-port and the input port of a power detector. The designed power detectors, which were implemented in L-band with 50 ohm matching and Ku-band with multiple LC matching circuits and isolator, respectively, were analyzed in viewpoints of the utilization as a power detector of direct conversion Six-port. The dynamic range of designed power detectors were also measured and rvaluated as a power detector of Six-port circuit.

  • PDF

A Study on the Optimum Design of the Charge Pump PLL with Multi-PFD (다중 위상검출기를 갖는 전하 펌프 PLL의 최적 설계에 관한 연구)

  • Jang, Young-Min;Kang, Kyung;Woo, Young-shin;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.271-274
    • /
    • 2001
  • In this paper, we propose a charge pump phase-locked loop (PLL) with multi-PFD which is composed of a sequential phase frequency detector(PFD) and a precharge PFD. When the Phase difference is within - $\pi$$\pi$ , operation frequency can be increased by using precharge PFD. When the phase difference is larger than │ $\pi$ │, acquisition time can be shorten by the additional control circuit with increased charge pump current. Therefore a high frequency operation, a fast acquisition and an unlimited error detection range can be achieved.

  • PDF

An Integer-N PLL Frequency Synthesizer Design for The 900MHz UHF RFID Application (900MHz UHF대역 RFID 응용을 위한 Integer-N PLL주파수 합성기 설계)

  • Kim, Sin-Woong;Kim, Young-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.247-252
    • /
    • 2009
  • This paper presents an Integer-N phase-locked loop (PLL) frequency synthesizer using a novel prescaler based on a charge pump and clock triggering circuit. A quadrature VCO has been designed for the 900MHz UHF RFID application. In this circuit, a voltage-controlled oscillator(VCO), a novel Prescaler, phase frequency detector(PFD), charge pump(CP), and analog lock detector(ALD) have been integrated with 0.35-${\mu}m$CMOS process. The integer divider has been developed with a verilog-HDL module, and the PLL mixed mode simulation has been performed with Spectre-Verilog co-simulator. The sweep range of VCO is designed from 828 to 960 MHz and the VCO generates four phase quadrature signals. The simulation results show that the phase noise of VCO is -102dBc/Hz at 100 KHz offset frequency, and the maximum lock-in time is about 4us with 32MHz step change (from 896 to 928 MHz).

  • PDF

Improvement of Phase Noise for Oscillator Using Frequency Locked Loop (주파수 잠금회로를 이용한 발진기의 위상잡음 개선)

  • Kim, Wook-Lae;Lee, Chang-Dae;Kim, Yong-Nam;Im, Pyung-Soon;Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.635-645
    • /
    • 2016
  • In this paper, we showed the phase noise of voltage controlled oscillator(VCO) can be radically improved using FLL(Frequency Locked Loop). At first, a 5 GHz VCO is fabricated using a hair-pin resonator. The fabricated VCO shows a phase noise of -53.1 dBc/Hz at 1 kHz frequency offset. In order to improve the phase noise of the fabricated VCO, a FLL is constructed using the feedback loop that consists of the VCO, a frequency detector composed of 5 GHz resonator, loop-filter, and level shifter. The fabricated FLL is designed to oscillate at a frequency of 5 GHz, and its measured phase noise is about -120.6 dBc/Hz at 1 kHz offset frequency. As a result, the phase noise of VCO can be radically improved by about 67.5 dB applying FLL. In addition, the measured phase noise performance is close to that of crystal oscillator.

Measurement of the Biological Active Point using the Bio-electrical impedance analysis based on the Adaptive Frequency Tracking Filter (적응주파수추적필터기반의 생체임피던스분석을 통한 생물학적활성점측정에 관한 연구)

  • Park, Hodong;Lee, Kyoungjoung;Yeom, Hojun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.109-114
    • /
    • 2013
  • The biological active points (BAP) are known as low resistance spots or good electro-permeable points. In this paper, a new method for BAP detection using the bio-impedance measurement system based on the adaptive frequency tracking filter (AFTF) and the transition event detector is presented. Also, the microcontroller process continuous time demodulation of the modulated signal by multi frequency components using the AFTF. The transition event detector based on the phase space method is applied about each frequency using the BAP equivalent model which is proposed.

3.125Gbps Reference-less Clock/Data Recovery using 4X Oversampling (레퍼런스 클록이 없는 3.125Gbps 4X 오버샘플링 클록/데이터 복원 회로)

  • Lee, Sung-Sop;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.28-33
    • /
    • 2006
  • An integrated 3.125Gbps clock and data recovery (CDR) circuit is presented. The circuit does not need a reference clock. It has a phase and frequency detector (PFD), which incorporates a bang-bang type 4X oversampling PD and a rotational frequency detector (FD). It also has a ring oscillator type VCO with four delay stages and three zero-offset charge pumps. With a proposed PD and m, the tracking range of 24% can be achieved. Experimental results show that the circuit is capable of recovering clock and data at rates of 3.125Gbps with 0.18 um CMOS technology. The measured recovered clock jitter (p-p) is about 14ps. The CDR has 1.8volt single power supply. The power dissipation is about 140mW.

A Clock and Data Recovery Circuit using Quarter-Rate Technique (1/4-레이트 기법을 이용한 클록 데이터 복원 회로)

  • Jeong, Il-Do;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.130-134
    • /
    • 2008
  • This paper presents a clock and data recovery(CDR) using a quarter-rate technique. The proposed CDR helps reduce the VCO frequency and is thus advantageous for high speed application. It can achieve a low jitter operation and extend the pull-in range without a reference clock. The CDR consists of a quarter-rate bang-bang type phase detector(PD) quarter-rate frequency detector(QRFD), two charge pumps circuits(CPs), low pass filter(LPF) and a ring voltage controlled oscillator(VCO). The Proposed CDR has been fabricated in a standard $0.18{\mu}m$ 1P6M CMOS technology. It occupies an active area $1{\times}1mm^2$ and consumes 98 mW from a single 1.8 V supply.

A low noise PLL with frequency voltage converter and loop filter voltage detector (주파수 전압 변환기와 루프 필터 전압 변환기를 이용한 저잡음 위상고정루프)

  • Choi, Hyek-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • This paper presents a jitter and phase noise characteristic improved phase-locked loop (PLL) with loop filter voltage detector(LFVD) and frequency voltage converter(FVC). Loop filter output voltage variation is determined through a circuit made of resistor and capacitor. The output signal of a small RC time constant circuit is almost the same as to loop filter output voltage. The output signal of a large RC time constant circuit is the average value of loop filter output voltage and becomes a reference voltage to the added LFVD. The LFVD output controls the current magnitude of sub-charge pump. When the loop filter output voltage increases, LFVD decreases the loop filter output voltage. When the loop filter output voltage decreases, LFVD increases the loop filter output voltage. In addition, FVC also improves the phase noise characteristic by reducing the loop filter output voltage variation. The proposed PLL with LFVD and FVC is designed in a 0.18um CMOS process with 1.8V power voltage. Simulation results show 0.854ps jitter and 30㎲ locking time.