• Title/Summary/Keyword: phagocytosis

Search Result 327, Processing Time 0.018 seconds

Effect of Unripened fruits and Ripened fruits of Rubus coreanus Miquel on Murine Peritoneal Macrophages (복분자 미숙과 및 성숙과가 생쥐의 복강 Macrophages에 미치는 영향)

  • Lee Taek Yul;Kim Dae Keun;So June No;Kwon Jin;Song Jung Mo;Eun Jae Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.991-995
    • /
    • 2003
  • The purpose of this research was to investigate the effects of unripened fruits and ripened fruits of Rubus coreanus Miquel on murine peritoneal macrophages. The 70% ethyl alcohol extracts (20 or 100 mg/kg) of unripened fruits (RCE-I) and of ripened fruits (RCE-II) were administered p.o. once a day for 7 days to mice. RCE-I and RCE-II decreased the phagocytic activity of murine peritoneal macrophages and the production of nitric oxide. Also, RCE-I and RCE-II increased the production of tumor necrosis factor- a from peritoneal macrophages. In general, the immuno-suppressive action of RCE-I on macrophages was more potent than those of RCE-II. These results suggest that the fruits of Rubus coreanus Miquel regulates the non-specific immune response via decrease of phagocytic activity and increase of production of tumor necrosis factor- a from murine peritoneal macrophages.

Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer's Disease

  • Yoon, Sang-Sun;AhnJo, Sang-Mee
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.245-255
    • /
    • 2012
  • Amyloid-${\beta}$ peptide ($A{\beta}$) is still best known as a molecule to cause Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. Thus, strategies on developing AD drugs have been focused on the reduction of $A{\beta}$ in the brain. Since accumulation of $A{\beta}$ depends on the rate of its synthesis and clearance, the metabolic pathway of $A{\beta}$ in the brain and the whole body should be carefully explored for AD research. Although the synthetic pathway of $A{\beta}$ is equally important, we summarize primarily the clearance pathway in this paper because the former has been extensively reviewed in previous studies. The clearance of $A{\beta}$ from the brain is accomplished by several mechanisms which include non-enzymatic and enzymatic pathways. Nonenzymatic pathway includes interstitial fluid drainage, uptake by microglial phagocytosis, and transport across the blood vessel walls into the circulation. Multiple $A{\beta}$-degrading enzymes (ADE) implicated in the clearance process have been identified, which include neprilysin, insulin-degrading enzyme, matrix metalloproteinase-9, glutamate carboxypeptidase II and others. A series of studies on $A{\beta}$ clearance mechanism provide new insight into the pathogenesis of AD at the molecular level and suggest a new target for the development of novel therapeutics.

CpG-DNA induces bacteria-reactive IgM enhancing phagocytic activity against Staphylococcus aureus infection

  • Kim, Te Ha;Kim, Dongbum;Lee, Heesu;Kwak, Min Hyung;Park, Sangkyu;Lee, Younghee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.635-640
    • /
    • 2019
  • CpG-DNA triggers the proliferation and differentiation of B cells which results in the increased production of antibodies. The presence of bacteria-reactive IgM in normal serum was reported; however, the relevance of CpG-DNA with the production of bacteria-reactive IgM has not been investigated. Here, we proved the function of CpG-DNA for the production of bacteria-reactive IgM. CpG-DNA administration led to increased production of bacteria-reactive IgM both in the peritoneal fluid and serum through TLR9 signaling pathway. When we stimulated B cells with CpG-DNA, production of bacteria-reactive IgM was reproduced in vitro. We established a bacteria-reactive monoclonal IgM antibody using CpG-DNA stimulated-peritoneal B cells. The monoclonal IgM antibody enhanced the phagocytic activity of RAW 264.7 cells against S. aureus MW2 infection. Therefore, we suggest that CpG-DNA enhances the antibacterial activity of the immune system by triggering the production of bacteria-reactive IgM. We also suggest the possible application of the antibodies for the treatment of antibiotics-resistant bacterial infections.

Heat-Killed Lactobacillus plantarum KCTC 13314BP Enhances Phagocytic Activity and Immunomodulatory Effects via Activation of MAPK and STAT3 Pathways

  • Jeong, Minju;Kim, Jae Hwan;Yang, Hee;Kang, Shin Dal;Song, Seongbong;Lee, Deukbuhm;Lee, Ji Su;Park, Jung Han Yoon;Byun, Sanguine;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1248-1254
    • /
    • 2019
  • Identification of novel probiotic strains is of great interest in the field of functional foods. Specific strains of heat-killed bacteria have been reported to exert immunomodulatory effects. Herein, we investigated the immune-stimulatory function of heat-killed Lactobacillus plantarum KCTC 13314BP (LBP). Treatment with LBP significantly increased the production of $TNF-{\alpha}$ and IL-6 by macrophages. More importantly, LBP was able to enhance the phagocytic activity of macrophages against bacterial particles. Activation of p38, JNK, ERK, $NF-{\kappa}B$, and STAT3 was involved in the immunomodulatory function of LBP. LBP treatment significantly increased production of $TNF-{\alpha}$ by bone marrow-derived macrophages and splenocytes, further confirming the immunostimulatory effect of LBP in primary immune cells. Interestingly, the immunomodulatory effects of LBP were much stronger than those of Lactobacillus rhamnosus GG, a well-known probiotic strain. These results indicate that LBP can be a promising immune-enhancing functional food agent.

Moieties of Complement iC3b Recognized by the I-domain of Integrin αXβ2

  • Choi, Jeongsuk;Buyannemekh, Dolgorsuren;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1023-1034
    • /
    • 2020
  • Complement fragment iC3b serves as a major opsonin for facilitating phagocytosis via its interaction with complement receptors CR3 and CR4, also known by their leukocyte integrin family names, αMβ2 and αXβ2, respectively. Although there is general agreement that iC3b binds to the αM and αX I-domains of the respective β2-integrins, much less is known regarding the regions of iC3b contributing to the αX I-domain binding. In this study, using recombinant αX I-domain, as well as recombinant fragments of iC3b as candidate binding partners, we have identified two distinct binding moieties of iC3b for the αX I-domain. They are the C3 convertase-generated N-terminal segment of the C3b α'-chain (α'NT) and the factor I cleavage-generated N-terminal segment in the CUBf region of α-chain. Additionally, we have found that the CUBf segment is a novel binding moiety of iC3b for the αM I-domain. The CUBf segment shows about a 2-fold higher binding activity than the α'NT for αX I-domain. We also have shown the involvement of crucial acidic residues on the iC3b side of the interface and basic residues on the I-domain side.

Hangambujeongsan or Kangai Fuzheng Powder shows the anti-cancer effect by enhancing macrophage activation

  • Yang, Wan-Quan;Han, Hyung Soo
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Objectives : Many of currently used anti-cancer drugs were developed to target cell death mechanisms and had serious side effects by causing damage to normal cells. Hangambujeongsan or Kangai Fuzheng Powder was a mixture based on the traditional Chinese medicine. It had been used in the local Chinese hospitals to treat cancer patients for decades and had shown a certain level of beneficial effects without major toxic effects. But its mechanism of action had not been elucidated yet. Thus this study aimed to investigate the effects of Kangai Fuzheng Powder in an in vitro experiment. Methods : Cancer lines or RAW264.7 mouse macrophage cells were treated with Kangai Fuzheng Powder. Cell viability was measured by MTT assay, and morphological observation was also performed. Gene expression of cytokines in macrophages was determined by real-time polymerase chain reaction. Phagocytic function assay was also performed in macrophage cells. Results : Kangai Fuzheng Powder had no direct detrimental effect on cancer cells. When macrophages were co-cultured with cancer cells, Kangai Fuzheng Powder had toxic effect on cancer cells. After exposing macrophages to Kangai Fuzheng Powder, macrophages transformed into activated form and the mRNA level of tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, interleukin-10 and monocyte chemotactic protein-1 was significantly enhanced. Phagocytic activity of macrophages was dramatically potentiated. Conclusions : We demonstrated that anti-cancer effect of Kangai Fuzheng Powder was related to activation of macrophages including enhanced cytokine production and phagocytic function.

Design and Implementation of Magnetic Stimulation Device Suitable for Herpes Zoster and Post Herpetic Neuralgia

  • Tack, Han-Ho;Kim, Gye-Sook;Kim, Whi-Young
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.199-214
    • /
    • 2020
  • An important technique of the present invention is primarily to parallel light detection, self-pulse therapy after diagnosis. Herpes zoster is a disease caused by varicella zoster virus, and the virus that has been latent in the dorsal root ganglion that controls the skin segment loses its immune system and physically damages it. It is an acute skin disease in which acute pain and bullous rash occur along the sensory ganglia, which are rehab by inducers such as malignant tumors. Dorsal root ganglion after complete recovery of varicella, relapsed after incubation in brain ganglion, latent virus sometimes suppressed activity by cell mediated immunity, and in cell ganglion with reduced cellular immunity. It proliferates and destroys neurons, causing pain while forming a rash and blisters. This can reduce cell necrosis and increase the phagocytosis and enzymatic activity through the movement of ions through the cell membrane, depolarization and membrane potential change, growth factor secretion, calcium ion transfer, chondrocyte synthesis, etc., And may offer treatment options for lesions of herpes zoster and post-herpetic neuralgia (PHN).Therefore, according to the present research, the diagnosis and treatment device of treating paing for herpes zoster and post-herpetic pain can be implemented in the early stage of herpes zoster, and conventional analgesic regulation, anti-inflammatory effect, post-herpetic neuralgia.

Immunostimulatory Activity of Hibiscus syriacus L. Leaves in Mouse Macrophages, RAW264.7 cells, and Immunosuppressed Mice

  • Na Gyeong Geum;Ju Hyeong Yu;So Jung Park;Min Yeong Choi;Jae Won Lee;Gwang Hun Park;Hae-Yun Kwon;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.697-703
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

Incidental finding of hemolymph nodes in a Holstein cow (Bos taurus taurus) with coccidiosis

  • Ho-Seong Cho;Sang-Joon Lee;Yunchan Lee;Yeonsu Oh
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.1
    • /
    • pp.81-85
    • /
    • 2023
  • This case report is about hemolymph nodes found in a dairy cow whose function is still not fully elucidated. A 4-month Holstein cow presented severe respiratory symptoms and hematochezia for a while with respiratory acidosis and metabolic alkalosis. Coccidiosis was diagnosed and treated immediately, but the cow died from respiratory acidosis and metabolic alkalosis. At necropsy, no abnormal appearance in thoracic and peritoneal organs was observed, but hemolymph nodes were observed being multifocally stuck on omasum serosa and the subcutaneous fascia of abdominal region, and the larger dark red lymph nodes were found along the omasum great curvature. Microscopically, lymphoid depletion and lymphadenitis in the lymph nodes were examined to point systemic infection, and in the hemolymph node, multifocally demarcated pale lesions with macrophage infiltration and fibrin deposition nearby subcapsular sinus. In subcapsular sinus of the hemolymph node, rod to linear gram-negative bacteria were found. Through this study, we might conclude that the hemolymph node is involved in pathogen phagocytosis.

Immune-Enhancing Effect of Hibiscus syriacus Leaves in RAW264.7 Cells and Cyclophosphamided-induced Immunosuppressed Mice

  • Seung Woo Im;Hyeok Jin Choi;Ju-Hyeong Yu;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.92-92
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

  • PDF