Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.3.245

Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer's Disease  

Yoon, Sang-Sun (Department of Pharmacy, College of Pharmacy, Dankook University)
AhnJo, Sang-Mee (Department of Pharmacy, College of Pharmacy, Dankook University)
Publication Information
Biomolecules & Therapeutics / v.20, no.3, 2012 , pp. 245-255 More about this Journal
Abstract
Amyloid-${\beta}$ peptide ($A{\beta}$) is still best known as a molecule to cause Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. Thus, strategies on developing AD drugs have been focused on the reduction of $A{\beta}$ in the brain. Since accumulation of $A{\beta}$ depends on the rate of its synthesis and clearance, the metabolic pathway of $A{\beta}$ in the brain and the whole body should be carefully explored for AD research. Although the synthetic pathway of $A{\beta}$ is equally important, we summarize primarily the clearance pathway in this paper because the former has been extensively reviewed in previous studies. The clearance of $A{\beta}$ from the brain is accomplished by several mechanisms which include non-enzymatic and enzymatic pathways. Nonenzymatic pathway includes interstitial fluid drainage, uptake by microglial phagocytosis, and transport across the blood vessel walls into the circulation. Multiple $A{\beta}$-degrading enzymes (ADE) implicated in the clearance process have been identified, which include neprilysin, insulin-degrading enzyme, matrix metalloproteinase-9, glutamate carboxypeptidase II and others. A series of studies on $A{\beta}$ clearance mechanism provide new insight into the pathogenesis of AD at the molecular level and suggest a new target for the development of novel therapeutics.
Keywords
Amyloid-${\beta}$ peptide; Amyloid-${\beta}$ peptide degrading enzyme; Alzheimer's disease; Clearance; Proteases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Frautschy, S. A., Yang, F., Irrizarry, M., Hyman, B., Saido, T. C., Hsiao, K. and Cole, G. M. (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152, 307-317.
2 Hafez, D., Huang, J. Y., Huynh, A. M., Valtierra, S., Rockenstein, E., Bruno, A. M., Lu, B., DesGroseillers, L., Masliah, E. and Marr, R. A. (2011) Neprilysin-2 is an important $\beta$-amyloid degrading enzyme. Am. J. Pathol. 178, 306-312.   DOI
3 Hama, E., Shirotani, K., Masumoto, H., Sekine-Aizawa, Y., Aizawa, H. and Saido, T. C. (2001) Clearance of extracellular and cell-associated amyloid beta peptide through viral expression of neprilysin in primary neurons. J. Biochem. 130, 721-726.   DOI
4 Hardy, J. A. and Higgins, G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185.   DOI   ScienceOn
5 Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356.   DOI   ScienceOn
6 Hellström-Lindahl, E., Ravid, R. and Nordberg, A. (2008) Age-dependent decline of neprilysin in Alzheimer's disease and normal brain: inverse correlation with A beta levels. Neurobiol. Aging 29, 210-221.   DOI
7 Hildebrandt, H., Haldenwanger, A. and Eling, P. (2009) False recognition correlates with amyloid-beta (1-42) but not with total tau in cerebrospinal fl uid of patients with dementia and mild cognitive impairment. J. Alzheimers Dis. 16, 157-165.
8 Eckman, E. A., Adams, S. K., Troendle, F. J., Stodola, B. A., Kahn, M. A., Fauq, A. H., Xiao, H. D., Bernstein, K. E. and Eckman, C. B. (2006) Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin- converting enzyme. J. Biol. Chem. 281, 30471-30478.   DOI
9 Eckman, E. A., Watson, M., Marlow, L., Sambamurti, K. and Eckman, C. B. (2003) Alzheimer's disease beta-amyloid peptide is increased in mice defi cient in endothelin-converting enzyme. J. Biol. Chem. 278, 2081-2084.   DOI
10 Eisele, Y. S., Baumann, M., Klebl, B., Nordhammer, C., Jucker, M. and Kilger, E. (2007) Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-beta degrading enzyme neprilysin. Mol. Biol. Cell. 18, 3591-3600.   DOI
11 El-Amouri, S. S., Zhu, H., Yu, J., Marr, R., Verma, I. M. and Kindy, M. S. (2008) Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease. Am. J. Pathol. 172, 1342-1354.   DOI
12 Espuny-Camacho, I., Dominguez, D., Merchiers, P., Van Rompaey, L., Selkoe, D. and De Strooper, B. (2010) Peroxisome proliferatoractivated receptor gamma enhances the activity of an insulin degrading enzyme-like metalloprotease for amyloid-beta clearance. J. Alzheimers Dis. 20, 1119-1132.
13 Fabbro, S. and Seeds, N. W. (2009) Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J. Neurochem. 109, 303-315.   DOI
14 Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E. A., Frosch, M. P., Eckman, C. B., Tanzi, R. E., Selkoe, D. J. and Guenette, S. (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100, 4162-4167.   DOI
15 Choi, D. S., Wang, D., Yu, G. Q., Zhu, G., Kharazia, V. N., Paredes, J. P., Chang, W. S., Deitchman, J. K., Mucke, L. and Messing, R. O. (2006) PKCepsilon increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proc. Natl. Acad. Sci. USA 103, 8215-8220.   DOI
16 Deb, S. and Gottschall, P. E. (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J. Neurochem. 66, 1641-1647.
17 Danielyan, L., Schäfer, R., Schulz, A., Ladewig, T., Lourhmati, A., Buadze, M., Schmitt, A. L., Verleysdonk, S., Kabisch, D., Koeppen, K., Siegel, G., Proksch, B., Kluba, T., Eckert, A., Kohle, C., Schoneberg, T., Northoff, H., Schwab, M. and Gleiter, C. H. (2009) Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: the critical role of erythropoietin. Cell Death Differ. 16, 1599-1614.   DOI
18 Deane, R., Bell, R. D., Sagare, A. and Zlokovic, B. V. (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol. Disord. Drug Targets 8, 16-30.   DOI
19 Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., Xu, F., Parisi, M., LaRue, B., Hu, H. W., Spijkers, P., Guo, H, Song, X, Lenting, P. J., Van Nostrand, W. E. and Zlokovic, B. V. (2004) LRP/amyloid beta-peptide interaction mediates differential brain effl ux of Abeta isoforms. Neuron 43, 333-344.   DOI
20 Deb, S., Zhang, J. W. and Gottschall, P. E. (1999) Activated isoforms of MMP-2 are induced in U87 human glioma cells in response to beta-amyloid peptide. J. Neurosci. Res. 55, 44-53.   DOI
21 Dong, Y. F., Kataoka, K., Tokutomi, Y., Nako, H., Nakamura, T., Toyama, K., Sueta, D., Koibuchi, N., Yamamoto, E., Ogawa, H. and Kim-Mitsuyama, S. (2011) Perindopril, a centrally active angiotensin- converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer's disease. FASEB J. 25, 2911-2920.   DOI
22 Bell, R. D., Sagare, A.P., Friedman, A. E., Bedi, G. S., Holtzman, D. M., Deane, R. and Zlokovic, B. V. (2007) Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27, 909-918.
23 Burgos-Ramos, E., Martos-Moreno, G. A., López, M. G., Herranz, R., Aguado-Llera, D., Egea, J., Frechilla, D., Cenarruzabeitia, E., Leon, R., Arilla-Ferreiro, E., Argente, J. and Barrios, V. (2009a) The N-terminal tripeptide of insulin-like growth factor-I protects against beta-amyloid-induced somatostatin depletion by calcium and glycogen synthase kinase 3 beta modulation. J. Neurochem. 109, 360-370.   DOI
24 Belyaev, N. D., Nalivaeva, N. N., Makova, N. Z. and Turner, A. J. (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep. 10, 94-100.   DOI
25 Bruno, M. A., Mufson, E. J., Wuu, J. and Cuello, A. C. (2009) Increased matrix metalloproteinase 9 activity in mild cognitive impairment. J. Neuropathol. Exp. Neurol. 68, 1309-1318.   DOI
26 Bu, G., Cam, J. and Zerbinatti, C. (2006) LRP in amyloid-beta production and metabolism. Ann. N. Y. Acad. Sci. 1086, 35-53.   DOI
27 Burgos-Ramos, E., Puebla-Jiménez, L. and Arilla-Ferreiro, E. (2009b) Minocycline prevents Abeta(25-35)-induced reduction of somatostatin and neprilysin content in rat temporal cortex. Life Sci. 84, 205-210.   DOI
28 Carare, R. O., Bernardes-Silva, M., Newman, T. A., Page, A. M., Nicoll, J. A., Perry, V. H. and Weller, R. O. (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: signifi cance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34, 131-144.   DOI
29 Castellani, R. J. and Smith, M. A. (2011) Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is 'too big to fail'. J. Pathol. 224, 147-152.   DOI
30 Xiao, Z. M., Sun, L., Liu, Y. M., Zhang, J. J. and Huang, J. (2009) Estrogen regulation of the neprilysin gene through a hormone-responsive element. J. Mol. Neurosci. 39, 22-26.   DOI
31 Yan, P., Hu, X., Song, H., Yin, K., Bateman, R. J., Cirrito, J. R., Xiao, Q., Hsu, F. F., Turk, J. W., Xu, J., Hsu, C. Y., Holtzman, D. M. and Lee, J. M. (2006) Matrix metalloproteinase-9 degrades amyloidbeta fi brils in vitro and compact plaques in situ. J. Biol. Chem. 281, 24566-24574.   DOI
32 Yang, L., Xu, S., Liu, C. and Su, Z. (2009) In vivo metabolism study of ginsenoside Re in rat using high-performance liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 395, 1441-1451.   DOI
33 Yuyama, K., Sun, H., Mitsutake, S. and Igarashi, Y. (2012) Sphingolipid- modulated exosome secretion promotes the clearance of amyloid-${\beta}$ by microglia. J. Biol. Chem. [Epub ahead of print]
34 Zou, L. B., Mouri, A., Iwata, N., Saido, T. C., Wang, D., Wang, M. W., Mizoguchi, H., Noda, Y. and Nabeshima, T. (2006) Inhibition of neprilysin by infusion of thiorphan into the hippocampus causes an accumulation of amyloid Beta and impairment of learning and memory. J. Pharmacol. Exp. Ther. 317, 334-340.
35 Ayoub, S. and Melzig, M. F. (2006) Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea. J. Pharm. Pharmacol. 58, 495-501.   DOI   ScienceOn
36 Aguado-Llera, D., Arilla-Ferreiro, E., Campos-Barros, A., Puebla-Jimenez, L. and Barrios, V. (2005) Protective effects of insulin-like growth factor-I on the somatostatinergic system in the temporal cortex of beta-amyloid-treated rats. J. Neurochem. 92, 607-615.   DOI
37 Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliott, J. I., Van Nostrand, W. E. and Smith, S. O. (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fi brils. Nat. Struct. Mol. Biol. 17, 561-567.   DOI
38 Akiyama, H., Kondo, H., Ikeda, K., Kato, M. and McGeer, P. L. (2001) Immunohistochemical localization of neprilysin in the human cerebral cortex: inverse association with vulnerability to amyloid betaprotein (Abeta) deposition. Brain Res. 902, 277-281.   DOI
39 Baig, S., Kehoe, P. G. and Love, S. (2008) MMP-2, -3 and -9 levels and activity are not related to Abeta load in the frontal cortex in Alzheimer's disease. Neuropathol. Appl. Neurobiol. 34, 205-215.   DOI
40 Bateman, R. J., Munsell, L. Y., Morris, J. C., Swarm, R., Yarasheski, K. E. and Holtzman, D. M. (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fl uid in vivo. Nat. Med. 12, 856-861.   DOI
41 Wang, R., Wang, S., Malter, J. S. and Wang, D. S. (2009a) Effects of 4-hydroxy-nonenal and Amyloid-beta on expression and activity of endothelin converting enzyme and insulin degrading enzyme in SH-SY5Y cells. J. Alzheimers Dis. 17, 489-501.
42 Tucker, H. M., Simpson, J., Kihiko-Ehmann, M., Younkin, L. H., McGillis, J. P., Younkin, S. G., Degen, J. L. and Estus, S. (2004) Plasmin defi ciency does not alter endogenous murine amyloid beta levels in mice. Neurosci. Lett. 368, 285-289.   DOI
43 Viswanathan, A. and Greenberg, S. M. (2011) Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70, 871-880.   DOI
44 Wang, H. Y., Lee, D. H., Davis, C. B. and Shank, R. P. (2000) Amyloid peptide Abeta(1-42) binds selectively and with picomolar affi nity to alpha7 nicotinic acetylcholine receptors. J. Neurochem. 75, 1155-1161.
45 Wang, R., Wang, S., Malter, J. S. and Wang, D. S. (2009b) Effects of HNE-modifi cation induced by Abeta on neprilysin expression and activity in SH-SY5Y cells. J. Neurochem. 108, 1072-1082.   DOI
46 Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C. and Husemann, J. (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9, 453-457.   DOI
47 Weller, R. O., Massey, A., Kuo, Y. M. and Roher, A. E. (2000) Cerebral amyloid angiopathy: accumulation of A beta in interstitial fl uid drainage pathways in Alzheimer's disease. Ann. N. Y. Acad. Sci. 903, 110-117.   DOI
48 Weller, R. O., Subash, M., Preston, S. D., Mazanti, I. and Carare, R. O. (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol. 18, 253-266.
49 Wyss-Coray, T. (2006) Inflammation in Alzheimer disease: driving force, bystander or benefi cial response? Nat. Med. 12, 1005-1015.
50 Savaskan, E., Hock, C., Olivieri, G., Bruttel, S., Rosenberg, C., Hulette, C. and Müller-Spahn, F. (2001) Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia. Neurobiol. Aging 22, 541-546.   DOI
51 Sehgal, N., Gupta, A., Valli, R. K., Joshi, S. D., Mills, J. T., Hamel, E., Khanna, P., Jain, S. C., Thakur, S. S. and Ravindranath, V. (2012) Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA 109, 3510-3515.   DOI
52 Selkoe, D. J. (1991) Alzheimer's disease. In the beginning... Nature 354, 432-433.   DOI   ScienceOn
53 Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B., Holtzman, D. M., Miller, C. A., Strickland, D. K., Ghiso, J. and Zlokovic, B. V. (2000) Clearance of Alzheimer's amyloidss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489-1499.   DOI
54 Tucker, H. M., Kihiko, M., Caldwell, J. N., Wright, S., Kawarabayashi, T., Price, D., Walker, D., Scheff, S., McGillis, J. P., Rydel, R. E. and Estus, S. (2000) The plasmin system is induced by and degrades amyloid-beta aggregates. J. Neurosci. 20, 3937-3946.
55 Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. and Rivest, S. (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489-502.   DOI
56 Spencer, B., Marr, R. A., Rockenstein, E., Crews, L., Adame, A., Potkar, R., Patrick, C., Gage, F. H., Verma, I. M. and Masliah, E. (2008) Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci. 9, 109.   DOI
57 Tanzi, R. E. and Bertram, L. (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545-555.   DOI
58 Pulukuri, S. M., Estes, N., Patel, J. and Rao, J. S. (2007) Demethylation- linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Res. 67, 930-939.   DOI
59 Rogers, J., Strohmeyer, R., Kovelowski, C. J. and Li, R. (2002) Microglia and infl ammatory mechanisms in the clearance of amyloid beta peptide. Glia 40, 260-269.   DOI   ScienceOn
60 Russo, R., Borghi, R., Markesbery, W., Tabaton, M. and Piccini, A. (2005) Neprylisin decreases uniformly in Alzheimer's disease and in normal aging. FEBS Lett. 579, 6027-6030.   DOI
61 Rylski, M., Amborska, R., Zybura, K., Michaluk, P., Bielinska, B., Konopacki, F. A., Wilczynski, G. M. and Kaczmarek, L. (2009) JunB is a repressor of MMP-9 transcription in depolarized rat brain neurons. Mol. Cell Neurosci. 40, 98-110.   DOI   ScienceOn
62 Saito, T., Iwata, N., Tsubuki, S., Takaki, Y., Takano, J., Huang, S. M., Suemoto, T., Higuchi, M. and Saido, T. C. (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat. Med. 11, 434-439.   DOI
63 Rylski, M., Amborska, R., Zybura, K., Mioduszewska, B., Michaluk, P., Jaworski, J. and Kaczmarek, L. (2008) Yin Yang 1 is a critical repressor of matrix metalloproteinase-9 expression in brain neurons. J. Biol. Chem. 283, 35140-35153.   DOI
64 Sagare, A. P., Deane, R., Zetterberg, H., Wallin, A., Blennow, K. and Zlokovic, B. V. (2011) Impaired lipoprotein receptor-mediated peripheral binding of plasma amyloid-${\beta}$ is an early biomarker for mild cognitive impairment preceding Alzheimer's disease. J. Alzheimers Dis. 24, 25-34.
65 Sagare, A., Deane, R., Bell, R. D., Johnson, B., Hamm, K., Pendu, R., Marky, A., Lenting, P. J., Wu, Z., Zarcone, T., Goate, A., Mayo, K., Perlmutter, D., Coma, M., Zhong, Z. and Zlokovic, B. V. (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat. Med. 13, 1029-1031.   DOI
66 Nielsen, H. M., Veerhuis, R., Holmqvist, B. and Janciauskiene, S. (2009) Binding and uptake of A beta1-42 by primary human astrocytes in vitro. Glia 57, 978-988.   DOI
67 Numata, K. and Kaplan, D. L. (2010) Mechanisms of enzymatic degradation of amyloid Beta microfi brils generating nanofi laments and nanospheres related to cytotoxicity. Biochemistry 49, 3254-3260.   DOI
68 Palmer, J. C., Baig, S., Kehoe, P. G. and Love, S. (2009) Endothelinconverting enzyme-2 is increased in Alzheimer's disease and upregulated by Abeta. Am. J. Pathol. 175, 262-270.   DOI
69 Palmer, J. C., Barker, R., Kehoe, P. G. and Love, S. (2012) Endothelin- 1 is Elevated in Alzheimer's Disease and Upregulated by Amyloid-${\beta}$. J. Alzheimers Dis. 29, 853-861.
70 Pardossi-Piquard, R., Petit, A., Kawarai, T., Sunyach, C., Alves da Costa, C., Vincent, B., Ring, S., D'Adamio, L., Shen, J., Müller, U., St George Hyslop, P. and Checler, F. (2005) Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 46, 541-554.   DOI
71 Pflanzner, T., Petsch, B., Andre-Dohmen, B., Muller-Schiffmann, A., Tschickardt, S., Weggen, S., Stitz, L., Korth, C. and Pietrzik, C. U. (2012) Cellular prion protein participates in amyloid-${\beta}$ transcytosis across the blood-brain barrier. J. Cereb. Blood Flow Metab. 32, 628-632.   DOI
72 Pike, C. J, Walencewicz-Wasserman, A. J., Kosmoski, J., Cribbs, D. H., Glabe, C. G. and Cotman, C. W. (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J. Neurochem. 64, 253-265.
73 Poirier, R., Wolfer, D. P., Welzl, H., Tracy, J., Galsworthy, M. J., Nitsch, R. M. and Mohajeri, M. H. (2006) Neuronal neprilysin overexpression is associated with attenuation of Abeta-related spatial memory deficit. Neurobiol. Dis. 24, 475-483.   DOI
74 Miners, J. S., Verbeek, M. M., Rikkert, M. O., Kehoe, P. G. and Love, S. (2008c) Immunocapture-based fluorometric assay for the measurement of neprilysin-specific enzyme activity in brain tissue homogenates and cerebrospinal fluid. J. Neurosci. Methods 167, 229-236.   DOI
75 Mohajeri, M. H., Wollmer, M. A. and Nitsch, R. M. (2002) Abeta 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J. Biol. Chem. 277, 35460-35465.   DOI
76 Monro, O. R., Mackic, J. B., Yamada, S., Segal, M. B., Ghiso, J., Maurer, C., Calero, M., Frangione, B. and Zlokovic, B. V. (2002) Substitution at codon 22 reduces clearance of Alzheimer's amyloid-beta peptide from the cerebrospinal fl uid and prevents its transport from the central nervous system into blood. Neurobiol. Aging 23, 405-412.   DOI
77 Nalivaeva, N. N., Beckett, C., Belyaev, N. D. and Turner, A. J. (2012) Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J. Neurochem. 120 Suppl 1, 167-185.   DOI
78 Mouri, A., Zou, L. B., Iwata, N., Saido, T. C., Wang, D., Wang, M. W., Noda, Y. and Nabeshima, T. (2006) Inhibition of neprilysin by thiorphan (i.c.v.) causes an accumulation of amyloid beta and impairment of learning and memory. Behav. Brain Res. 168, 83-91.   DOI
79 Mueller-Steiner, S., Zhou, Y., Arai, H., Roberson, E. D., Sun, B., Chen, J., Wang, X., Yu, G., Esposito, L., Mucke, L. and Gan, L. (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51, 703-714.   DOI
80 Naert, G. and Rivest, S. (2011) The role of microglial cell subsets in Alzheimer's disease. Curr. Alzheimer Res. 8, 151-155.   DOI   ScienceOn
81 Narita, M., Holtzman, D. M., Schwartz, A. L. and Bu, G. (1997) Alpha2- macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor- related protein. J. Neurochem. 69, 1904-1911.
82 Miller, B. C., Eckman, E. A., Sambamurti, K., Dobbs, N., Chow, K. M., Eckman, C. B., Hersh, L. B. and Thiele, D. L. (2003) Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc. Natl. Acad. Sci. USA 100, 6221-6226.   DOI
83 Miners, J. S., Ashby, E., Van Helmond, Z., Chalmers, K. A., Palmer, L. E., Love, S. and Kehoe, P. G. (2008a) Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 34, 181-193.   DOI
84 Miners, J. S., Baig, S., Tayler, H., Kehoe, P. G. and Love, S. (2009) Neprilysin and insulin-degrading enzyme levels are increased in Alzheimer disease in relation to disease severity. J. Neuropathol. Exp. Neurol. 68, 902-914.   DOI
85 Miners, J. S., van Helmond, Z., Kehoe, P. G. and Love, S. (2010) Changes with age in the activities of beta-secretase and the Abetadegrading enzymes neprilysin, insulin-degrading enzyme and angiotensin- converting enzyme. Brain Pathol. 20, 794-802.   DOI
86 Miners, J. S., Kehoe, P. G. and Love, S. (2008b) Immunocapturebased fluorometric assay for the measurement of insulin-degrading enzyme activity in brain tissue homogenates. J. Neurosci. Methods 169, 177-181.   DOI
87 Miners, J. S., Morris, S., Love, S. and Kehoe, P. G. (2011) Accumulation of insoluble amyloid-${\beta}$ in down's syndrome is associated with increased BACE-1 and neprilysin activities. J. Alzheimers Dis. 23, 101-108.
88 Miners, J. S., van Helmond, Z., Chalmers, K., Wilcock, G., Love, S. and Kehoe, P. G. (2006) Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 65, 1012-1021.   DOI
89 Miners, J. S., van Helmond, Z., Raiker, M., Love, S. and Kehoe, P. G. (2010) ACE variants and association with brain A${\beta}$ levels in Alzheimer's disease. Am. J. Transl. Res. 3, 73-80.
90 Liang, K., Yang, L., Yin, C., Xiao, Z., Zhang, J., Liu, Y. and Huang, J. (2010) Estrogen stimulates degradation of beta-amyloid peptide by up-regulating neprilysin. J. Biol. Chem. 285, 935-942.   DOI
91 Liu, Y., Studzinski, C., Beckett, T., Murphy, M. P., Klein, R. L. and Hersh, L. B. (2010) Circulating neprilysin clears brain amyloid. Mol. Cell Neurosci. 45, 101-107.   DOI
92 Love, S. (2004) Contribution of cerebral amyloid angiopathy to Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 75, 1-4.   DOI
93 Melino, G., Draoui, M., Bernardini, S., Bellincampi, L., Reichert, U. and Cohen, P. (1996) Regulation by retinoic acid of insulin-degrading enzyme and of a related endoprotease in human neuroblastoma cell lines. Cell Growth Differ. 7, 787-796.
94 Madani, R., Poirier, R., Wolfer, D. P., Welzl, H., Groscurth, P., Lipp, H. P., Lu, B., El Mouedden, M., Mercken, M., Nitsch, R. M. and Mohajeri, M. H. (2006) Lack of neprilysin suffi ces to generate murine amyloid-like deposits in the brain and behavioral defi cit in vivo. J. Neurosci. Res. 84, 1871-1878.   DOI
95 Marr, R. A., Rockenstein, E., Mukherjee, A., Kindy, M. S., Hersh, L. B., Gage, F. H., Verma, I. M. and Masliah, E. (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. 23, 1992-1996.
96 Meilandt, W. J., Cisse, M., Ho, K., Wu, T., Esposito, L. A., Scearce- Levie, K., Cheng, I. H., Yu, G. Q. and Mucke, L. (2009) Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive defi cits in human amyloid precursor protein transgenic mice. J. Neurosci. 29, 1977-1986.   DOI
97 Melzig, M. F. and Escher, F. (2002) Induction of neutral endopeptidase and angiotensin-converting enzyme activity of SK-N-SH cells in vitro by quercetin and resveratrol. Pharmazie 57, 556-558.
98 Melzig, M. F. and Janka, M. (2003) Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract. Phytomedicine 10, 494-498.   DOI
99 Kim, T., Hinton, D. J. and Choi, D. S. (2011b) Protein kinase C-regulated a${\beta}$ production and clearance. Int. J. Alzheimers Dis. 857368.
100 Kiss, A., Kowalski, J. and Melzig, M. F. (2006) Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmazie 61, 66-69.
101 Leal, M. C., Surace, E. I., Holgado, M. P., Ferrari, C. C., Tarelli, R., Pitossi, F., Wisniewski, T., Castaño, E. M. and Morelli, L. (2012) Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular A${\beta}$ metabolism. Biochim. Biophys. Acta 1823, 227-235.   DOI
102 Krauze, M. T., Saito, R., Noble, C., Bringas, J., Forsayeth, J., McKnight, T. R., Park, J. and Bankiewicz, K. S. (2005) Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp. Neurol. 196, 104-111.   DOI
103 Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. and Strittmatter, S. M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128-1132.   DOI
104 Leal, M. C., Dorfman, V. B., Gamba, A. F., Frangione, B., Wisniewski, T., Castaño, E. M., Sigurdsson, E. M. and Morelli, L. (2006) Plaqueassociated overexpression of insulin-degrading enzyme in the cerebral cortex of aged transgenic tg2576 mice with Alzheimer pathology. J. Neuropathol. Exp. Neurol. 65, 976-987.   DOI
105 Lee, J. M., Yin, K. J., Hsin, I., Chen, S., Fryer, J. D., Holtzman, D. M., Hsu, C. Y. and Xu, J. (2003) Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann. Neurol. 54, 379-382.   DOI
106 Leissring, M. A., Farris, W., Chang, A. Y., Walsh, D. M., Wu, X., Sun, X., Frosch, M. P. and Selkoe, D. J. (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087-1093.   DOI
107 Jarrett, J. T., Berger, E. P. and Lansbury, P. T. Jr. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693-4697.   DOI   ScienceOn
108 Kalinin, S., Richardson, J. C. and Feinstein, D. L. (2009) A PPARdelta agonist reduces amyloid burden and brain infl ammation in a transgenic mouse model of Alzheimer's disease. Curr. Alzheimer. Res. 6, 431-437.   DOI
109 Jo, S. A., Ahn, K., Kim, E., Kim, H. S., Jo, I., Kim, D. K., Han, C. and Park, M. H. (2008) Association of BACE1 gene polymorphism with Alzheimer's disease in Asian populations: meta-analysis including Korean samples. Dement. Geriatr. Cogn. Disord. 25, 165-169.   DOI
110 Jung, S. S., Zhang, W. and Van Nostrand, W. E. (2003) Pathogenic A beta induces the expression and activation of matrix metalloproteinase- 2 in human cerebrovascular smooth muscle cells. J. Neurochem. 85, 1208-1215.   DOI
111 Kim, J. Y., Kim, D. H., Kim, J. H., Lee, D., Jeon, H. B., Kwon, S. J., Kim, S. M., Yoo, Y. J., Lee, E. H., Choi, S. J., Seo, S. W., Lee, J. I., Na, D. L., Yang, Y. S., Oh, W. and Chang, J. W. (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-${\beta}$ plaques. Cell Death Differ. 19, 680-691.   DOI
112 Kim, K. W., Park, J. H., Kim, M. H., Kim, M. D., Kim, B. J., Kim, S. K., Kim, J. L., Moon, S. W., Bae, J. N., Woo, J. I., Ryu, S. H., Yoon, J. C., Lee, N. J., Lee, D. Y., Lee, D. W., Lee, S. B., Lee, J. J., Lee JY, Lee CU, Chang, S. M., Jhoo, J. H. and Cho, M. J. (2011a) A nationwide survey on the prevalence of dementia and mild cognitive impairment in South Korea. J. Alzheimers Dis. 23, 281-291.
113 Kim, M. J., Chae, S. S., Koh, Y. H. Lee, S. K. and Jo, S. A. (2010) Glutamate carboxypeptidase II: an amyloid peptide-degrading enzyme with physiological function in the brain. FASEB J. 24, 4491-4502.   DOI
114 Hong, H., Baik, T., Song, K., Nam, I., Chung, M., and Jo, S. (Submitted) In silico study of interaction between neurotransmitters and ${\beta}$-amyloid peptide ($A{\beta}$): a novel working hypothesis of $A{\beta}$-mediated pathogenesis of Alzheimer's disease.
115 Jacobsen, J. S., Comery, T. A., Martone, R. L., Elokdah, H., Crandall, D. L., Oganesian, A., Aschmies, S., Kirksey, Y., Gonzales, C., Xu, J., Zhou, H., Atchison, K., Wagner, E., Zaleska, M. M., Das, I., Arias, R. L., Bard, J., Riddell, D., Gardell, S. J., Abou-Gharbia, M., Robichaud, A., Magolda, R., Vlasuk, G. P., Bjornsson, T., Reinhart, P. H. and Pangalos, M. N. (2008) Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc. Natl. Acad. Sci. USA 105, 8754-8759.   DOI
116 Huang, S. M., Mouri, A., Kokubo, H., Nakajima, R., Suemoto, T., Higuchi, M., Staufenbiel M, Noda, Y., Yamaguchi, H., Nabeshima, T., Saido, T. C. and Iwata, N. (2006) Neprilysin-sensitive synapse-associated amyloid-beta peptide oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem. 281, 17941-17951.   DOI
117 Iwata, N., Mizukami, H., Shirotani, K., Takaki, Y., Muramatsu, S., Lu, B., Gerard, N. P., Gerard, C., Ozawa, K. and Saido, T. C. (2004) Presynaptic localization of neprilysin contributes to effi cient clearance of amyloid-beta peptide in mouse brain. J. Neurosci. 24, 991-998.   DOI
118 Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N. P, Gerard, C., Hama, E., Lee, H. J. and Saido, T. C. (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292, 1550-1552.   DOI   ScienceOn
119 Jaeger, L. B., Dohgu, S., Hwang, M. C., Farr, S. A., Murphy, M. P., Fleegal-DeMotta, M. A., Lynch, J. L., Robinson, S. M., Niehoff, M. L., Johnson, S. N., Kumar, V. B. and Banks, W. A. (2009) Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J. Alzheimers Dis. 17, 553-570.
120 Farris, W., Schütz, S. G., Cirrito, J. R., Shankar, G. M., Sun, X., George, A., Leissring, M. A., Walsh, D. M., Qiu, W. Q., Holtzman, D. M. and Selkoe, D. J. (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am. J. Pathol. 171, 241-251.   DOI
121 Floden, A. M. and Combs, C. K. (2011) Microglia demonstrate agedependent interaction with amyloid-$\beta$ fibrils. J. Alzheimers Dis. 25, 279-293.