DOI QR코드

DOI QR Code

CpG-DNA induces bacteria-reactive IgM enhancing phagocytic activity against Staphylococcus aureus infection

  • Kim, Te Ha (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kim, Dongbum (Center for Medical Science Research, College of Medicine, Hallym University) ;
  • Lee, Heesu (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kwak, Min Hyung (Department of Microbiology, College of Medicine, Hallym University) ;
  • Park, Sangkyu (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Younghee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
  • Received : 2019.01.14
  • Accepted : 2019.03.13
  • Published : 2019.11.30

Abstract

CpG-DNA triggers the proliferation and differentiation of B cells which results in the increased production of antibodies. The presence of bacteria-reactive IgM in normal serum was reported; however, the relevance of CpG-DNA with the production of bacteria-reactive IgM has not been investigated. Here, we proved the function of CpG-DNA for the production of bacteria-reactive IgM. CpG-DNA administration led to increased production of bacteria-reactive IgM both in the peritoneal fluid and serum through TLR9 signaling pathway. When we stimulated B cells with CpG-DNA, production of bacteria-reactive IgM was reproduced in vitro. We established a bacteria-reactive monoclonal IgM antibody using CpG-DNA stimulated-peritoneal B cells. The monoclonal IgM antibody enhanced the phagocytic activity of RAW 264.7 cells against S. aureus MW2 infection. Therefore, we suggest that CpG-DNA enhances the antibacterial activity of the immune system by triggering the production of bacteria-reactive IgM. We also suggest the possible application of the antibodies for the treatment of antibiotics-resistant bacterial infections.

Keywords

References

  1. Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37, 1141-1149 https://doi.org/10.1016/S0161-5890(01)00025-6
  2. Casali P and Schettino EW (1996) Structure and function of natural antibodies. Curr Top Microbiol Immunol 210, 167-179
  3. Hjelm F, Carlsson F, Getahun A and Heyman B (2006) Antibody-mediated regulation of the immune response. Scand J Immunol 64, 177-184 https://doi.org/10.1111/j.1365-3083.2006.01818.x
  4. Ehrenstein MR and Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10, 778-786 https://doi.org/10.1038/nri2849
  5. Ricci ML, von Hunolstein C, Gomez MJ, Parisi L, Tissi L and Orefici G (1996) Protective activity of a murine monoclonal antibody against acute and chronic experimental infection with type IV group B streptococcus. J Med Microbiol 44, 475-481 https://doi.org/10.1099/00222615-44-6-475
  6. Hustinx W, Benaissa-Trouw B, Van Kessel K et al (1997) Granulocyte colony-stimulating factor enhances protection by anti-K1 capsular IgM antibody in murine Escherichia coli sepsis. Eur J Clin Invest 27, 1044-1048 https://doi.org/10.1046/j.1365-2362.1997.2290787.x
  7. Connolly SE, Thanassi DG and Benach JL (2004) Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia. J Immunol 172, 1191-1197 https://doi.org/10.4049/jimmunol.172.2.1191
  8. Kinoshita M, Shinomiya N, Ono S et al (2006) Restoration of natural IgM production from liver B cells by exogenous IL-18 improves the survival of burn-injured mice infected with Pseudomonas aeruginosa. J Immunol 177, 4627-4635 https://doi.org/10.4049/jimmunol.177.7.4627
  9. Schwartz JT, Barker JH, Long ME, Kaufman J, McCracken J and Allen LA (2012) Natural IgM mediates complementdependent uptake of Francisella tularensis by human neutrophils via complement receptors 1 and 3 in nonimmune serum. J Immunol 189, 3064-3077 https://doi.org/10.4049/jimmunol.1200816
  10. Brown JS, Hussell T, Gilliland SM et al (2002) The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci U S A 99, 16969-16974 https://doi.org/10.1073/pnas.012669199
  11. Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT and Leong JM (2003) The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J Immunol 170, 3819-3827 https://doi.org/10.4049/jimmunol.170.7.3819
  12. Klinman DM, Yi AK, Beaucage SL, Conover J and Krieg AM (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A 93, 2879-2883 https://doi.org/10.1073/pnas.93.7.2879
  13. Krieg AM, Yi AK, Matson S et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549 https://doi.org/10.1038/374546a0
  14. Deng JC, Moore TA, Newstead MW, Zeng X, Krieg AM and Standiford TJ (2004) CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. J Immunol 173, 5148-5155 https://doi.org/10.4049/jimmunol.173.8.5148
  15. Ishii KJ, Ito S, Tamura T et al (2005) CpG-activated Thy1.2+ dendritic cells protect against lethal Listeria monocytogenes infection. Eur J Immunol 35, 2397-2405 https://doi.org/10.1002/eji.200425795
  16. Mohamed W, Domann E, Chakraborty T et al (2016) TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress. BMC Microbiol 16, 230 https://doi.org/10.1186/s12866-016-0855-8
  17. Wu HM, Wang J, Zhang B, Fang L, Xu K and Liu RY (2016) CpG-ODN promotes phagocytosis and autophagy through JNK/P38 signal pathway in Staphylococcus aureus-stimulated macrophage. Life Sci 161, 51-59 https://doi.org/10.1016/j.lfs.2016.07.016
  18. Kim TH, Kim D, Gautam A et al (2018) CpG-DNA exerts antibacterial effects by protecting immune cells and producing bacteria-reactive antibodies. Sci Rep 8, 16236 https://doi.org/10.1038/s41598-018-34722-y
  19. Adem PV, Montgomery CP, Husain AN et al (2005) Staphylococcus aureus sepsis and the Waterhouse-Friderichsen syndrome in children. N Engl J Med 353, 1245-1251 https://doi.org/10.1056/NEJMoa044194
  20. Neu HC (1992) The crisis in antibiotic resistance. Science 257, 1064-1073 https://doi.org/10.1126/science.257.5073.1064
  21. Schaffer AC and Lee JC (2008) Vaccination and passive immunisation against Staphylococcus aureus. Int J Antimicrob Agents 32 Suppl 1, S71-78 https://doi.org/10.1016/j.ijantimicag.2008.06.009
  22. Fattom AI, Horwith G, Fuller S, Propst M and Naso R (2004) Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. Vaccine 22, 880-887 https://doi.org/10.1016/j.vaccine.2003.11.034
  23. Vernachio J, Bayer AS, Le T et al (2003) Anti-clumping factor A immunoglobulin reduces the duration of methicillin-resistant Staphylococcus aureus bacteremia in an experimental model of infective endocarditis. Antimicrob Agents Chemother 47, 3400-3406 https://doi.org/10.1128/AAC.47.11.3400-3406.2003
  24. Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO and Notkins AL (2007) The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1, 51-61 https://doi.org/10.1016/j.chom.2007.01.002
  25. Hoffman W, Lakkis FG and Chalasani G (2016) B Cells, Antibodies, and More. Clin J Am Soc Nephrol 11, 137-154 https://doi.org/10.2215/CJN.09430915
  26. Cole LE, Yang Y, Elkins KL et al (2009) Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc Natl Acad Sci U S A 106, 4343-4348 https://doi.org/10.1073/pnas.0813411106
  27. Panda S, Zhang J, Tan NS, Ho B and Ding JL (2013) Natural IgG antibodies provide innate protection against ficolin-opsonized bacteria. EMBO J 32, 2905-2919 https://doi.org/10.1038/emboj.2013.199
  28. Park BK, Maharjan S, Lee SI et al (2018) Generation and characterization of a monoclonal antibody against MERSVoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep 52, 397-402 https://doi.org/10.5483/bmbrep.2019.52.6.185
  29. Kim DW, Shin MJ, Choi YJ et al (2018) Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-kB pathways. BMB Rep 51, 654-659 https://doi.org/10.5483/BMBRep.2018.51.12.248