Browse > Article
http://dx.doi.org/10.7732/kjpr.2022.35.6.697

Immunostimulatory Activity of Hibiscus syriacus L. Leaves in Mouse Macrophages, RAW264.7 cells, and Immunosuppressed Mice  

Na Gyeong Geum (Department of Medicinal Plant Resources, Andong National University)
Ju Hyeong Yu (Department of Medicinal Plant Resources, Andong National University)
So Jung Park (Department of Medicinal Plant Resources, Andong National University)
Min Yeong Choi (Department of Medicinal Plant Resources, Andong National University)
Jae Won Lee (Department of Medicinal Plant Resources, Andong National University)
Gwang Hun Park (Forest Medicinal Resources Research Center, National Institute of Forest Science)
Hae-Yun Kwon (Special Forest Resources Division, National Institute of Forest Science)
Jin Boo Jeong (Department of Medicinal Plant Resources, Andong National University)
Publication Information
Korean Journal of Plant Resources / v.35, no.6, 2022 , pp. 697-703 More about this Journal
Abstract
Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.
Keywords
Hibiscus syriacus; Immune enhancement; Macrophages;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aliyu, M., F. Zohora and A.A. Saboor-Yaraghi. 2021. Spleen in innate and adaptive immunity regulation. AIMS Allergy Immunol. 5(1):1-17.
2 Bai, Y., Y. Jiang, T. Liu, F. Li, J. Zhang, Y. Luo, L. Zhang, G. Yan, Z. Feng, X. Li, X. Wang and W. Hu. 2019. Xinjiang herbal tea exerts immunomodulatory activity via TLR2/4-mediated MAPK signalling pathways in RAW264.7 cells and prevents cyclophosphamide-induced immunosuppression in mice. J. Ethnopharmacol. 228:179-187.   DOI
3 Geng, L., W. Hu, Y. Liu, J. Wang and Q. Zhang. 201 8. A heteropolysaccharide from Saccharina japonica with immunomodulatory effect on RAW264.7 cells. Carbohydr. Polym. 201:557-565.
4 Karunarathne, W.A.H.M., K.T. Lee, Y.H. Choi, C.Y. Jin and G.Y. Kim. 2020. Anthocyanins isolated from Hibiscus syriacus L. attenuate lipopolysaccharide-induced inflammation and endotoxic shock by inhibiting the TLR4/MD2-mediated NF-κB signaling pathway. Phytomedicine 76:153237.
5 Geum, N.G., J.H. Yu, J.H. Yeo, M.Y. Choi, J.W. Lee, J.K. Baek and J.B. Jeong. 2021. Immunostimulatory activity and anti-obesity activity of Hibiscus manihot leaves in mouse macrophages, RAW264.7 cells and mouse adipocytes, 3T3-L1 cells. J. Funct. Foods 87:104803.
6 Hong, S.H., J.M. Ku, H.I. Kim, C.W. Ahn, S.H. Park, H.S. Seo, Y.C. Shin and S.G. Ko. 2017. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Res. Int. 99(1):623-629.   DOI
7 Kasimu, R., C. Chen, X. Xie and X. Li. 2017. Water-soluble polysaccharide from Erythronium sibiricum bulb: structural characterisation and immunomodulating activity. Int. J. Biol. Macromol. 105:452-462.   DOI
8 Ma, X.L., M. Meng, L.R. Han, D. Cheng, X.H. Cao andC.L. Wang. 2016. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4-mitogen-activated protein kinases-nuclear factor κb pathways. Food Funct. 7:2763-2772.   DOI
9 Moynagh, P.N. 2005. TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol. 26(9):469-479.
10 Ren, Z., T. Qin, F. Qiu, T. Song, D. Lin, Y. Ma, J. Li and Y. Huang. 2017. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW 264.7. Int. J. Biol. Macromol. 105(1):879-885.   DOI
11 Shen, C.Y., W.L. Zhang and J.G. Jiang. 2017. Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and NF-kB signaling pathways in RAW264.7 cells. J. Funct. Foods 34:118-129.   DOI
12 Shi, L.S., C.H. Wu, T.C. Yang, C.W. Yao, H.C. Lin and W.L. Chang. 2014. Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus. Fitoterapia 97:184-191.   DOI
13 Siveen, K.S. and G. Kuttan. 2009. Role of macrophage in tumour progression. Immunol. Lett. 123:97-102.   DOI
14 Swanson, L., G.D. Katkar, J. Tam, R.F. Pranadinata, Y. Chareddy, J. Coates, M.S. Anandachar, V. Castillo, J. Olson, V. Nizet, I. Kufareva, S. Das and P. Ghosh. 2020. TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin. PNASU. 117(43):26895-26906.   DOI
15 We, M., T. Cheng, S. Cheng, T. Lian, L. Wang and S. Chiou. 2006. Immunomodulatory properties of Grifola frondosa in submerged culture. J. Agri. Food Chem. 54:2906-2914.   DOI
16 Zha, Z., S.Y. Wang, W. Chu, Y. Lv, H. Kan, Q. Chen, L. Zhong, L. Yue, J. Xiao, Y. Wang and H. Yin. 2018. Isolation, purification, structural characterization and immunostimulatory activity of water-soluble polysaccharides from Lepidium meyenii. Phytochemistry 147:184-193.   DOI
17 Yang, F., X. Li, Y. Yang, S.M. Ayivi-Tosuh, F. Wang, H. Li and G. Wang. 2019. A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264.7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways. Int. J. Biol. Macromol. 140:895-906.   DOI
18 Yu, J.H., N.G. Geum, J.H. Yeo and J.B. Jeong. 2021. Immunoenhancing and anti-obesity effect of Abelmoschus manihot root extracts. Korean J. Plant Res. 34(5):411-419.   DOI
19 Yu, Z., M. Kong, P. Zhang, Q. Sun and K. Chen. 2016. Immune-enhancing activity of extracellular polysaccharides isolated from Rhizopus nigricans. Carbohydr. Polym. 148:318-325.   DOI
20 Zhang, S., S. Nie, D. Huang, J. Huang, Y. Wang and M. Xie. 2013. Polysaccharide from Ganoderma atrum evokes antitumor activity via toll-like receptor 4-mediated NF-κB and mitogen-activated protein kinase signaling pathways. J. Agri. Food Chem. 61:3676-3682.   DOI
21 Zhou, R., L. Teng, Y. Zhu, C, Zhang, Y. Yang and Y. Chen. 2021. Preparation of Amomum longiligulare polysaccharides 1- PLGA nanoparticle and its immune enhancement ability on RAW264.7 cells. Int. Immunopharmacol. 99:108053.