Effect of Unripened fruits and Ripened fruits of Rubus coreanus Miquel on Murine Peritoneal Macrophages

복분자 미숙과 및 성숙과가 생쥐의 복강 Macrophages에 미치는 영향

  • Lee Taek Yul (College of Pharmacy, Woosuk University) ;
  • Kim Dae Keun (College of Pharmacy, Woosuk University) ;
  • So June No (College of Science and Technology, Woosuk University) ;
  • Kwon Jin (Department of Health Administration, Kunjang College) ;
  • Song Jung Mo (College of Oriental Medicine, Woosuk University) ;
  • Eun Jae Soon (College of Pharmacy, Woosuk University)
  • Published : 2003.08.01

Abstract

The purpose of this research was to investigate the effects of unripened fruits and ripened fruits of Rubus coreanus Miquel on murine peritoneal macrophages. The 70% ethyl alcohol extracts (20 or 100 mg/kg) of unripened fruits (RCE-I) and of ripened fruits (RCE-II) were administered p.o. once a day for 7 days to mice. RCE-I and RCE-II decreased the phagocytic activity of murine peritoneal macrophages and the production of nitric oxide. Also, RCE-I and RCE-II increased the production of tumor necrosis factor- a from peritoneal macrophages. In general, the immuno-suppressive action of RCE-I on macrophages was more potent than those of RCE-II. These results suggest that the fruits of Rubus coreanus Miquel regulates the non-specific immune response via decrease of phagocytic activity and increase of production of tumor necrosis factor- a from murine peritoneal macrophages.

Keywords

References

  1. The Medicinal Plants of Korea. Bae,G.H.
  2. J.Korean Soc.Food Sci.Nutr. v.30 no.6 Physicochemical charcacteristics of Rubus coreanus Miquel. Cha,H.S.;Lee,M.K.;Hwang,J.B.;Park,M.S.;Park,K.M.
  3. M.S.Thesis, Chung-Ang Univ. Phenolic compounds from the leaves of Rubus coreanum. Kim,M.S.
  4. M.S.Thesis, Chung-Ang, Univ. Tannins from the fruits of Rubus coreanum. Bang,G.C.
  5. Arch.Pharm.Res. v.16 Triterpenoids from Rubus fructus (Bogbunja). Kim,Y.H. https://doi.org/10.1007/BF03036856
  6. Chem.Pharm.Bull. v.33 19 α-hydroxyursane-type triterpene glucosy1 esters from the roots of Rubus suavissimis. Gao,F. https://doi.org/10.1248/cpb.33.37
  7. Planta Med. v.58 Activity of polyphenolic crude extracts as scavengers of superoxide radicals and inhibitors of xanthine oxidase. Costantino,L.;Albasini,A.;Rasteli,G.;Benvenuti,S. https://doi.org/10.1055/s-2006-961481
  8. Korean J.Food Sci.Technol. v.33 no.4 Physiological activities of Rubus coreanus Miquel. Cha,H.S.;Park,M.S.;Park,K.M.
  9. J. Agric.Food.Chem. v.46 no.10 Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. Heinonen,L.M.;Meyer,A.S.;Frankel,E.N. https://doi.org/10.1021/jf980181c
  10. J.Food Compos.Anal. v.2 Extraction,stability,and quantitation of ellagic acid in various fruits and nuts. Daniel,E.M.;Krupnick,A.S.;Heru,Y.H.;Blinzler,J.A.;Nims,R.W.;Storner,G.D. https://doi.org/10.1016/0889-1575(89)90005-7
  11. J.Agric.Food.Chem. v.48 no.10 Ellagic acid,vitamin C and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. De Ancos,B.;Gonzalez,E.M.;Cano,M.P. https://doi.org/10.1021/jf0001684
  12. Phytother.Res. v.16 Action of Rubus coreanus extract on systemic and local anaphylaxis. Shin,T.Y.;Kim,S.H.;Lee,E.S.;Eom,D.O.;Kim,H.M. https://doi.org/10.1002/ptr.925
  13. Kor.J.Oriental Phys.&Pathol. v.17 no.3 Effect of Rubus coreanus Miquel on the Specific Immune Response in Mice. Won,K.S.;Lee,T.W.;Eun,J.S.;Song,J.M.
  14. J.Immunol.Methods v.174 Chemiluminenscence and nitrite determinations by the MALU macrophage cell line. Boudard,F.;Vallot,N.;Cabaner,C.;Bastide,M. https://doi.org/10.1016/0022-1759(94)90030-2
  15. J.Immunol.Methods v.112 Measurement of phagocyte chemiluminenscence in a microtiter plate format. Blair,A.L.;Cree,I.A.;Beck,J.S.;Hating,M.J.G. https://doi.org/10.1016/0022-1759(88)90352-3
  16. J.Immuno.Methods v.162 A rapid and simple microfluorometric phagocytosis assay. Chok,P.W.;Choon,S.P.;Benjamin,H.S. https://doi.org/10.1016/0022-1759(93)90400-2
  17. Infec.Immunity v.59 no.9 Killing of Plasmodium faciparum in vitro by nitric oxide derivatives. Rockett,K.A.;Awburn,M.M.;Cowden,W.B.;Clark,I.A.
  18. J.Leucocyte Biol. v.41 Zymosan-stimulated production of phosphatidic acid by macrophages:relationship to release of superoxide anion and inhibition by agents that increase intracellular cyclic AMP. Channon,J.Y.;Leslie,C.C.;Johnston,Jr.R.B. https://doi.org/10.1002/jlb.41.5.450
  19. Infect.Immun. v.45 Intra- and extracellular ebebts in luminol-dependent chemiluline -scence of polymorphonuclear leukocytes. Breiheim,G.;Stendahl,O.;Dahlgren,C.
  20. Kor.J.Immunol. v.18 Nitric oxide inhibits macrophage pseudopodia formation in the activated macrophages. Jun,C.D.;Park,S.K.;Kim,J.M.;Kim,J,D.;Kim,S.H.
  21. 면역생물학 김대식 외
  22. J.Natl.Cancer Instit. v.84 no.11 Overproduction of nitric oxide in cytokine-mediated and septic shock. Kilbourn,R.G.;Griffith,O.W.