DOI QR코드

DOI QR Code

Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer's Disease

  • Yoon, Sang-Sun (Department of Pharmacy, College of Pharmacy, Dankook University) ;
  • AhnJo, Sang-Mee (Department of Pharmacy, College of Pharmacy, Dankook University)
  • Received : 2012.04.18
  • Accepted : 2012.05.01
  • Published : 2012.05.31

Abstract

Amyloid-${\beta}$ peptide ($A{\beta}$) is still best known as a molecule to cause Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. Thus, strategies on developing AD drugs have been focused on the reduction of $A{\beta}$ in the brain. Since accumulation of $A{\beta}$ depends on the rate of its synthesis and clearance, the metabolic pathway of $A{\beta}$ in the brain and the whole body should be carefully explored for AD research. Although the synthetic pathway of $A{\beta}$ is equally important, we summarize primarily the clearance pathway in this paper because the former has been extensively reviewed in previous studies. The clearance of $A{\beta}$ from the brain is accomplished by several mechanisms which include non-enzymatic and enzymatic pathways. Nonenzymatic pathway includes interstitial fluid drainage, uptake by microglial phagocytosis, and transport across the blood vessel walls into the circulation. Multiple $A{\beta}$-degrading enzymes (ADE) implicated in the clearance process have been identified, which include neprilysin, insulin-degrading enzyme, matrix metalloproteinase-9, glutamate carboxypeptidase II and others. A series of studies on $A{\beta}$ clearance mechanism provide new insight into the pathogenesis of AD at the molecular level and suggest a new target for the development of novel therapeutics.

Keywords

References

  1. Aguado-Llera, D., Arilla-Ferreiro, E., Campos-Barros, A., Puebla-Jimenez, L. and Barrios, V. (2005) Protective effects of insulin-like growth factor-I on the somatostatinergic system in the temporal cortex of beta-amyloid-treated rats. J. Neurochem. 92, 607-615. https://doi.org/10.1111/j.1471-4159.2004.02889.x
  2. Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliott, J. I., Van Nostrand, W. E. and Smith, S. O. (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fi brils. Nat. Struct. Mol. Biol. 17, 561-567. https://doi.org/10.1038/nsmb.1799
  3. Akiyama, H., Kondo, H., Ikeda, K., Kato, M. and McGeer, P. L. (2001) Immunohistochemical localization of neprilysin in the human cerebral cortex: inverse association with vulnerability to amyloid betaprotein (Abeta) deposition. Brain Res. 902, 277-281. https://doi.org/10.1016/S0006-8993(01)02390-3
  4. Ayoub, S. and Melzig, M. F. (2006) Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea. J. Pharm. Pharmacol. 58, 495-501. https://doi.org/10.1211/jpp.58.4.0009
  5. Baig, S., Kehoe, P. G. and Love, S. (2008) MMP-2, -3 and -9 levels and activity are not related to Abeta load in the frontal cortex in Alzheimer's disease. Neuropathol. Appl. Neurobiol. 34, 205-215. https://doi.org/10.1111/j.1365-2990.2007.00897.x
  6. Bateman, R. J., Munsell, L. Y., Morris, J. C., Swarm, R., Yarasheski, K. E. and Holtzman, D. M. (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fl uid in vivo. Nat. Med. 12, 856-861. https://doi.org/10.1038/nm1438
  7. Bell, R. D., Sagare, A.P., Friedman, A. E., Bedi, G. S., Holtzman, D. M., Deane, R. and Zlokovic, B. V. (2007) Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27, 909-918.
  8. Belyaev, N. D., Nalivaeva, N. N., Makova, N. Z. and Turner, A. J. (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep. 10, 94-100. https://doi.org/10.1038/embor.2008.222
  9. Bruno, M. A., Mufson, E. J., Wuu, J. and Cuello, A. C. (2009) Increased matrix metalloproteinase 9 activity in mild cognitive impairment. J. Neuropathol. Exp. Neurol. 68, 1309-1318. https://doi.org/10.1097/NEN.0b013e3181c22569
  10. Bu, G., Cam, J. and Zerbinatti, C. (2006) LRP in amyloid-beta production and metabolism. Ann. N. Y. Acad. Sci. 1086, 35-53. https://doi.org/10.1196/annals.1377.005
  11. Burgos-Ramos, E., Martos-Moreno, G. A., López, M. G., Herranz, R., Aguado-Llera, D., Egea, J., Frechilla, D., Cenarruzabeitia, E., Leon, R., Arilla-Ferreiro, E., Argente, J. and Barrios, V. (2009a) The N-terminal tripeptide of insulin-like growth factor-I protects against beta-amyloid-induced somatostatin depletion by calcium and glycogen synthase kinase 3 beta modulation. J. Neurochem. 109, 360-370. https://doi.org/10.1111/j.1471-4159.2009.05980.x
  12. Burgos-Ramos, E., Puebla-Jiménez, L. and Arilla-Ferreiro, E. (2009b) Minocycline prevents Abeta(25-35)-induced reduction of somatostatin and neprilysin content in rat temporal cortex. Life Sci. 84, 205-210. https://doi.org/10.1016/j.lfs.2008.11.019
  13. Carare, R. O., Bernardes-Silva, M., Newman, T. A., Page, A. M., Nicoll, J. A., Perry, V. H. and Weller, R. O. (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: signifi cance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34, 131-144. https://doi.org/10.1111/j.1365-2990.2007.00926.x
  14. Castellani, R. J. and Smith, M. A. (2011) Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is 'too big to fail'. J. Pathol. 224, 147-152. https://doi.org/10.1002/path.2885
  15. Choi, D. S., Wang, D., Yu, G. Q., Zhu, G., Kharazia, V. N., Paredes, J. P., Chang, W. S., Deitchman, J. K., Mucke, L. and Messing, R. O. (2006) PKCepsilon increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proc. Natl. Acad. Sci. USA 103, 8215-8220. https://doi.org/10.1073/pnas.0509725103
  16. Danielyan, L., Schäfer, R., Schulz, A., Ladewig, T., Lourhmati, A., Buadze, M., Schmitt, A. L., Verleysdonk, S., Kabisch, D., Koeppen, K., Siegel, G., Proksch, B., Kluba, T., Eckert, A., Kohle, C., Schoneberg, T., Northoff, H., Schwab, M. and Gleiter, C. H. (2009) Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: the critical role of erythropoietin. Cell Death Differ. 16, 1599-1614. https://doi.org/10.1038/cdd.2009.95
  17. Deane, R., Bell, R. D., Sagare, A. and Zlokovic, B. V. (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol. Disord. Drug Targets 8, 16-30. https://doi.org/10.2174/187152709787601867
  18. Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., Xu, F., Parisi, M., LaRue, B., Hu, H. W., Spijkers, P., Guo, H, Song, X, Lenting, P. J., Van Nostrand, W. E. and Zlokovic, B. V. (2004) LRP/amyloid beta-peptide interaction mediates differential brain effl ux of Abeta isoforms. Neuron 43, 333-344. https://doi.org/10.1016/j.neuron.2004.07.017
  19. Deb, S. and Gottschall, P. E. (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J. Neurochem. 66, 1641-1647.
  20. Deb, S., Zhang, J. W. and Gottschall, P. E. (1999) Activated isoforms of MMP-2 are induced in U87 human glioma cells in response to beta-amyloid peptide. J. Neurosci. Res. 55, 44-53. https://doi.org/10.1002/(SICI)1097-4547(19990101)55:1<44::AID-JNR6>3.0.CO;2-G
  21. Dong, Y. F., Kataoka, K., Tokutomi, Y., Nako, H., Nakamura, T., Toyama, K., Sueta, D., Koibuchi, N., Yamamoto, E., Ogawa, H. and Kim-Mitsuyama, S. (2011) Perindopril, a centrally active angiotensin- converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer's disease. FASEB J. 25, 2911-2920. https://doi.org/10.1096/fj.11-182873
  22. Eckman, E. A., Adams, S. K., Troendle, F. J., Stodola, B. A., Kahn, M. A., Fauq, A. H., Xiao, H. D., Bernstein, K. E. and Eckman, C. B. (2006) Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin- converting enzyme. J. Biol. Chem. 281, 30471-30478. https://doi.org/10.1074/jbc.M605827200
  23. Eckman, E. A., Watson, M., Marlow, L., Sambamurti, K. and Eckman, C. B. (2003) Alzheimer's disease beta-amyloid peptide is increased in mice defi cient in endothelin-converting enzyme. J. Biol. Chem. 278, 2081-2084. https://doi.org/10.1074/jbc.C200642200
  24. Eisele, Y. S., Baumann, M., Klebl, B., Nordhammer, C., Jucker, M. and Kilger, E. (2007) Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-beta degrading enzyme neprilysin. Mol. Biol. Cell. 18, 3591-3600. https://doi.org/10.1091/mbc.E07-01-0035
  25. El-Amouri, S. S., Zhu, H., Yu, J., Marr, R., Verma, I. M. and Kindy, M. S. (2008) Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease. Am. J. Pathol. 172, 1342-1354. https://doi.org/10.2353/ajpath.2008.070620
  26. Espuny-Camacho, I., Dominguez, D., Merchiers, P., Van Rompaey, L., Selkoe, D. and De Strooper, B. (2010) Peroxisome proliferatoractivated receptor gamma enhances the activity of an insulin degrading enzyme-like metalloprotease for amyloid-beta clearance. J. Alzheimers Dis. 20, 1119-1132.
  27. Fabbro, S. and Seeds, N. W. (2009) Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J. Neurochem. 109, 303-315. https://doi.org/10.1111/j.1471-4159.2009.05894.x
  28. Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E. A., Frosch, M. P., Eckman, C. B., Tanzi, R. E., Selkoe, D. J. and Guenette, S. (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100, 4162-4167. https://doi.org/10.1073/pnas.0230450100
  29. Farris, W., Schütz, S. G., Cirrito, J. R., Shankar, G. M., Sun, X., George, A., Leissring, M. A., Walsh, D. M., Qiu, W. Q., Holtzman, D. M. and Selkoe, D. J. (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am. J. Pathol. 171, 241-251. https://doi.org/10.2353/ajpath.2007.070105
  30. Floden, A. M. and Combs, C. K. (2011) Microglia demonstrate agedependent interaction with amyloid-$\beta$ fibrils. J. Alzheimers Dis. 25, 279-293.
  31. Frautschy, S. A., Yang, F., Irrizarry, M., Hyman, B., Saido, T. C., Hsiao, K. and Cole, G. M. (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152, 307-317.
  32. Hafez, D., Huang, J. Y., Huynh, A. M., Valtierra, S., Rockenstein, E., Bruno, A. M., Lu, B., DesGroseillers, L., Masliah, E. and Marr, R. A. (2011) Neprilysin-2 is an important $\beta$-amyloid degrading enzyme. Am. J. Pathol. 178, 306-312. https://doi.org/10.1016/j.ajpath.2010.11.012
  33. Hama, E., Shirotani, K., Masumoto, H., Sekine-Aizawa, Y., Aizawa, H. and Saido, T. C. (2001) Clearance of extracellular and cell-associated amyloid beta peptide through viral expression of neprilysin in primary neurons. J. Biochem. 130, 721-726. https://doi.org/10.1093/oxfordjournals.jbchem.a003040
  34. Hardy, J. A. and Higgins, G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185. https://doi.org/10.1126/science.1566067
  35. Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. https://doi.org/10.1126/science.1072994
  36. Hellström-Lindahl, E., Ravid, R. and Nordberg, A. (2008) Age-dependent decline of neprilysin in Alzheimer's disease and normal brain: inverse correlation with A beta levels. Neurobiol. Aging 29, 210-221. https://doi.org/10.1016/j.neurobiolaging.2006.10.010
  37. Hildebrandt, H., Haldenwanger, A. and Eling, P. (2009) False recognition correlates with amyloid-beta (1-42) but not with total tau in cerebrospinal fl uid of patients with dementia and mild cognitive impairment. J. Alzheimers Dis. 16, 157-165.
  38. Hong, H., Baik, T., Song, K., Nam, I., Chung, M., and Jo, S. (Submitted) In silico study of interaction between neurotransmitters and ${\beta}$-amyloid peptide ($A{\beta}$): a novel working hypothesis of $A{\beta}$-mediated pathogenesis of Alzheimer's disease.
  39. Huang, S. M., Mouri, A., Kokubo, H., Nakajima, R., Suemoto, T., Higuchi, M., Staufenbiel M, Noda, Y., Yamaguchi, H., Nabeshima, T., Saido, T. C. and Iwata, N. (2006) Neprilysin-sensitive synapse-associated amyloid-beta peptide oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem. 281, 17941-17951. https://doi.org/10.1074/jbc.M601372200
  40. Iwata, N., Mizukami, H., Shirotani, K., Takaki, Y., Muramatsu, S., Lu, B., Gerard, N. P., Gerard, C., Ozawa, K. and Saido, T. C. (2004) Presynaptic localization of neprilysin contributes to effi cient clearance of amyloid-beta peptide in mouse brain. J. Neurosci. 24, 991-998. https://doi.org/10.1523/JNEUROSCI.4792-03.2004
  41. Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N. P, Gerard, C., Hama, E., Lee, H. J. and Saido, T. C. (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292, 1550-1552. https://doi.org/10.1126/science.1059946
  42. Jacobsen, J. S., Comery, T. A., Martone, R. L., Elokdah, H., Crandall, D. L., Oganesian, A., Aschmies, S., Kirksey, Y., Gonzales, C., Xu, J., Zhou, H., Atchison, K., Wagner, E., Zaleska, M. M., Das, I., Arias, R. L., Bard, J., Riddell, D., Gardell, S. J., Abou-Gharbia, M., Robichaud, A., Magolda, R., Vlasuk, G. P., Bjornsson, T., Reinhart, P. H. and Pangalos, M. N. (2008) Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc. Natl. Acad. Sci. USA 105, 8754-8759. https://doi.org/10.1073/pnas.0710823105
  43. Jaeger, L. B., Dohgu, S., Hwang, M. C., Farr, S. A., Murphy, M. P., Fleegal-DeMotta, M. A., Lynch, J. L., Robinson, S. M., Niehoff, M. L., Johnson, S. N., Kumar, V. B. and Banks, W. A. (2009) Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J. Alzheimers Dis. 17, 553-570.
  44. Jarrett, J. T., Berger, E. P. and Lansbury, P. T. Jr. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693-4697. https://doi.org/10.1021/bi00069a001
  45. Jo, S. A., Ahn, K., Kim, E., Kim, H. S., Jo, I., Kim, D. K., Han, C. and Park, M. H. (2008) Association of BACE1 gene polymorphism with Alzheimer's disease in Asian populations: meta-analysis including Korean samples. Dement. Geriatr. Cogn. Disord. 25, 165-169. https://doi.org/10.1159/000112918
  46. Jung, S. S., Zhang, W. and Van Nostrand, W. E. (2003) Pathogenic A beta induces the expression and activation of matrix metalloproteinase- 2 in human cerebrovascular smooth muscle cells. J. Neurochem. 85, 1208-1215. https://doi.org/10.1046/j.1471-4159.2003.01745.x
  47. Kalinin, S., Richardson, J. C. and Feinstein, D. L. (2009) A PPARdelta agonist reduces amyloid burden and brain infl ammation in a transgenic mouse model of Alzheimer's disease. Curr. Alzheimer. Res. 6, 431-437. https://doi.org/10.2174/156720509789207949
  48. Kim, J. Y., Kim, D. H., Kim, J. H., Lee, D., Jeon, H. B., Kwon, S. J., Kim, S. M., Yoo, Y. J., Lee, E. H., Choi, S. J., Seo, S. W., Lee, J. I., Na, D. L., Yang, Y. S., Oh, W. and Chang, J. W. (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-${\beta}$ plaques. Cell Death Differ. 19, 680-691. https://doi.org/10.1038/cdd.2011.140
  49. Kim, K. W., Park, J. H., Kim, M. H., Kim, M. D., Kim, B. J., Kim, S. K., Kim, J. L., Moon, S. W., Bae, J. N., Woo, J. I., Ryu, S. H., Yoon, J. C., Lee, N. J., Lee, D. Y., Lee, D. W., Lee, S. B., Lee, J. J., Lee JY, Lee CU, Chang, S. M., Jhoo, J. H. and Cho, M. J. (2011a) A nationwide survey on the prevalence of dementia and mild cognitive impairment in South Korea. J. Alzheimers Dis. 23, 281-291.
  50. Kim, M. J., Chae, S. S., Koh, Y. H. Lee, S. K. and Jo, S. A. (2010) Glutamate carboxypeptidase II: an amyloid peptide-degrading enzyme with physiological function in the brain. FASEB J. 24, 4491-4502. https://doi.org/10.1096/fj.09-148825
  51. Kim, T., Hinton, D. J. and Choi, D. S. (2011b) Protein kinase C-regulated a${\beta}$ production and clearance. Int. J. Alzheimers Dis. 857368.
  52. Kiss, A., Kowalski, J. and Melzig, M. F. (2006) Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmazie 61, 66-69.
  53. Krauze, M. T., Saito, R., Noble, C., Bringas, J., Forsayeth, J., McKnight, T. R., Park, J. and Bankiewicz, K. S. (2005) Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp. Neurol. 196, 104-111. https://doi.org/10.1016/j.expneurol.2005.07.009
  54. Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. and Strittmatter, S. M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128-1132. https://doi.org/10.1038/nature07761
  55. Leal, M. C., Dorfman, V. B., Gamba, A. F., Frangione, B., Wisniewski, T., Castaño, E. M., Sigurdsson, E. M. and Morelli, L. (2006) Plaqueassociated overexpression of insulin-degrading enzyme in the cerebral cortex of aged transgenic tg2576 mice with Alzheimer pathology. J. Neuropathol. Exp. Neurol. 65, 976-987. https://doi.org/10.1097/01.jnen.0000235853.70092.ba
  56. Leal, M. C., Surace, E. I., Holgado, M. P., Ferrari, C. C., Tarelli, R., Pitossi, F., Wisniewski, T., Castaño, E. M. and Morelli, L. (2012) Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular A${\beta}$ metabolism. Biochim. Biophys. Acta 1823, 227-235. https://doi.org/10.1016/j.bbamcr.2011.09.014
  57. Lee, J. M., Yin, K. J., Hsin, I., Chen, S., Fryer, J. D., Holtzman, D. M., Hsu, C. Y. and Xu, J. (2003) Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann. Neurol. 54, 379-382. https://doi.org/10.1002/ana.10671
  58. Leissring, M. A., Farris, W., Chang, A. Y., Walsh, D. M., Wu, X., Sun, X., Frosch, M. P. and Selkoe, D. J. (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087-1093. https://doi.org/10.1016/S0896-6273(03)00787-6
  59. Liang, K., Yang, L., Yin, C., Xiao, Z., Zhang, J., Liu, Y. and Huang, J. (2010) Estrogen stimulates degradation of beta-amyloid peptide by up-regulating neprilysin. J. Biol. Chem. 285, 935-942. https://doi.org/10.1074/jbc.M109.051664
  60. Liu, Y., Studzinski, C., Beckett, T., Murphy, M. P., Klein, R. L. and Hersh, L. B. (2010) Circulating neprilysin clears brain amyloid. Mol. Cell Neurosci. 45, 101-107. https://doi.org/10.1016/j.mcn.2010.05.014
  61. Love, S. (2004) Contribution of cerebral amyloid angiopathy to Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 75, 1-4. https://doi.org/10.1136/jnnp.2003.034249
  62. Madani, R., Poirier, R., Wolfer, D. P., Welzl, H., Groscurth, P., Lipp, H. P., Lu, B., El Mouedden, M., Mercken, M., Nitsch, R. M. and Mohajeri, M. H. (2006) Lack of neprilysin suffi ces to generate murine amyloid-like deposits in the brain and behavioral defi cit in vivo. J. Neurosci. Res. 84, 1871-1878. https://doi.org/10.1002/jnr.21074
  63. Marr, R. A., Rockenstein, E., Mukherjee, A., Kindy, M. S., Hersh, L. B., Gage, F. H., Verma, I. M. and Masliah, E. (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. 23, 1992-1996.
  64. Meilandt, W. J., Cisse, M., Ho, K., Wu, T., Esposito, L. A., Scearce- Levie, K., Cheng, I. H., Yu, G. Q. and Mucke, L. (2009) Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive defi cits in human amyloid precursor protein transgenic mice. J. Neurosci. 29, 1977-1986. https://doi.org/10.1523/JNEUROSCI.2984-08.2009
  65. Melino, G., Draoui, M., Bernardini, S., Bellincampi, L., Reichert, U. and Cohen, P. (1996) Regulation by retinoic acid of insulin-degrading enzyme and of a related endoprotease in human neuroblastoma cell lines. Cell Growth Differ. 7, 787-796.
  66. Melzig, M. F. and Escher, F. (2002) Induction of neutral endopeptidase and angiotensin-converting enzyme activity of SK-N-SH cells in vitro by quercetin and resveratrol. Pharmazie 57, 556-558.
  67. Melzig, M. F. and Janka, M. (2003) Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract. Phytomedicine 10, 494-498. https://doi.org/10.1078/094471103322331449
  68. Miller, B. C., Eckman, E. A., Sambamurti, K., Dobbs, N., Chow, K. M., Eckman, C. B., Hersh, L. B. and Thiele, D. L. (2003) Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc. Natl. Acad. Sci. USA 100, 6221-6226. https://doi.org/10.1073/pnas.1031520100
  69. Miners, J. S., Ashby, E., Van Helmond, Z., Chalmers, K. A., Palmer, L. E., Love, S. and Kehoe, P. G. (2008a) Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 34, 181-193. https://doi.org/10.1111/j.1365-2990.2007.00885.x
  70. Miners, J. S., Baig, S., Tayler, H., Kehoe, P. G. and Love, S. (2009) Neprilysin and insulin-degrading enzyme levels are increased in Alzheimer disease in relation to disease severity. J. Neuropathol. Exp. Neurol. 68, 902-914. https://doi.org/10.1097/NEN.0b013e3181afe475
  71. Miners, J. S., Kehoe, P. G. and Love, S. (2008b) Immunocapturebased fluorometric assay for the measurement of insulin-degrading enzyme activity in brain tissue homogenates. J. Neurosci. Methods 169, 177-181. https://doi.org/10.1016/j.jneumeth.2007.12.003
  72. Miners, J. S., Morris, S., Love, S. and Kehoe, P. G. (2011) Accumulation of insoluble amyloid-${\beta}$ in down's syndrome is associated with increased BACE-1 and neprilysin activities. J. Alzheimers Dis. 23, 101-108.
  73. Miners, J. S., van Helmond, Z., Chalmers, K., Wilcock, G., Love, S. and Kehoe, P. G. (2006) Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 65, 1012-1021. https://doi.org/10.1097/01.jnen.0000240463.87886.9a
  74. Miners, J. S., van Helmond, Z., Kehoe, P. G. and Love, S. (2010) Changes with age in the activities of beta-secretase and the Abetadegrading enzymes neprilysin, insulin-degrading enzyme and angiotensin- converting enzyme. Brain Pathol. 20, 794-802. https://doi.org/10.1111/j.1750-3639.2010.00375.x
  75. Miners, J. S., van Helmond, Z., Raiker, M., Love, S. and Kehoe, P. G. (2010) ACE variants and association with brain A${\beta}$ levels in Alzheimer's disease. Am. J. Transl. Res. 3, 73-80.
  76. Miners, J. S., Verbeek, M. M., Rikkert, M. O., Kehoe, P. G. and Love, S. (2008c) Immunocapture-based fluorometric assay for the measurement of neprilysin-specific enzyme activity in brain tissue homogenates and cerebrospinal fluid. J. Neurosci. Methods 167, 229-236. https://doi.org/10.1016/j.jneumeth.2007.08.012
  77. Mohajeri, M. H., Wollmer, M. A. and Nitsch, R. M. (2002) Abeta 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J. Biol. Chem. 277, 35460-35465. https://doi.org/10.1074/jbc.M202899200
  78. Monro, O. R., Mackic, J. B., Yamada, S., Segal, M. B., Ghiso, J., Maurer, C., Calero, M., Frangione, B. and Zlokovic, B. V. (2002) Substitution at codon 22 reduces clearance of Alzheimer's amyloid-beta peptide from the cerebrospinal fl uid and prevents its transport from the central nervous system into blood. Neurobiol. Aging 23, 405-412. https://doi.org/10.1016/S0197-4580(01)00317-7
  79. Mouri, A., Zou, L. B., Iwata, N., Saido, T. C., Wang, D., Wang, M. W., Noda, Y. and Nabeshima, T. (2006) Inhibition of neprilysin by thiorphan (i.c.v.) causes an accumulation of amyloid beta and impairment of learning and memory. Behav. Brain Res. 168, 83-91. https://doi.org/10.1016/j.bbr.2005.10.014
  80. Mueller-Steiner, S., Zhou, Y., Arai, H., Roberson, E. D., Sun, B., Chen, J., Wang, X., Yu, G., Esposito, L., Mucke, L. and Gan, L. (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51, 703-714. https://doi.org/10.1016/j.neuron.2006.07.027
  81. Naert, G. and Rivest, S. (2011) The role of microglial cell subsets in Alzheimer's disease. Curr. Alzheimer Res. 8, 151-155. https://doi.org/10.2174/156720511795256035
  82. Nalivaeva, N. N., Beckett, C., Belyaev, N. D. and Turner, A. J. (2012) Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J. Neurochem. 120 Suppl 1, 167-185. https://doi.org/10.1111/j.1471-4159.2011.07510.x
  83. Narita, M., Holtzman, D. M., Schwartz, A. L. and Bu, G. (1997) Alpha2- macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor- related protein. J. Neurochem. 69, 1904-1911.
  84. Nielsen, H. M., Veerhuis, R., Holmqvist, B. and Janciauskiene, S. (2009) Binding and uptake of A beta1-42 by primary human astrocytes in vitro. Glia 57, 978-988. https://doi.org/10.1002/glia.20822
  85. Numata, K. and Kaplan, D. L. (2010) Mechanisms of enzymatic degradation of amyloid Beta microfi brils generating nanofi laments and nanospheres related to cytotoxicity. Biochemistry 49, 3254-3260. https://doi.org/10.1021/bi902134p
  86. Palmer, J. C., Baig, S., Kehoe, P. G. and Love, S. (2009) Endothelinconverting enzyme-2 is increased in Alzheimer's disease and upregulated by Abeta. Am. J. Pathol. 175, 262-270. https://doi.org/10.2353/ajpath.2009.081054
  87. Palmer, J. C., Barker, R., Kehoe, P. G. and Love, S. (2012) Endothelin- 1 is Elevated in Alzheimer's Disease and Upregulated by Amyloid-${\beta}$. J. Alzheimers Dis. 29, 853-861.
  88. Pardossi-Piquard, R., Petit, A., Kawarai, T., Sunyach, C., Alves da Costa, C., Vincent, B., Ring, S., D'Adamio, L., Shen, J., Müller, U., St George Hyslop, P. and Checler, F. (2005) Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 46, 541-554. https://doi.org/10.1016/j.neuron.2005.04.008
  89. Pflanzner, T., Petsch, B., Andre-Dohmen, B., Muller-Schiffmann, A., Tschickardt, S., Weggen, S., Stitz, L., Korth, C. and Pietrzik, C. U. (2012) Cellular prion protein participates in amyloid-${\beta}$ transcytosis across the blood-brain barrier. J. Cereb. Blood Flow Metab. 32, 628-632. https://doi.org/10.1038/jcbfm.2012.7
  90. Pike, C. J, Walencewicz-Wasserman, A. J., Kosmoski, J., Cribbs, D. H., Glabe, C. G. and Cotman, C. W. (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J. Neurochem. 64, 253-265.
  91. Poirier, R., Wolfer, D. P., Welzl, H., Tracy, J., Galsworthy, M. J., Nitsch, R. M. and Mohajeri, M. H. (2006) Neuronal neprilysin overexpression is associated with attenuation of Abeta-related spatial memory deficit. Neurobiol. Dis. 24, 475-483. https://doi.org/10.1016/j.nbd.2006.08.003
  92. Pulukuri, S. M., Estes, N., Patel, J. and Rao, J. S. (2007) Demethylation- linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Res. 67, 930-939. https://doi.org/10.1158/0008-5472.CAN-06-2892
  93. Rogers, J., Strohmeyer, R., Kovelowski, C. J. and Li, R. (2002) Microglia and infl ammatory mechanisms in the clearance of amyloid beta peptide. Glia 40, 260-269. https://doi.org/10.1002/glia.10153
  94. Russo, R., Borghi, R., Markesbery, W., Tabaton, M. and Piccini, A. (2005) Neprylisin decreases uniformly in Alzheimer's disease and in normal aging. FEBS Lett. 579, 6027-6030. https://doi.org/10.1016/j.febslet.2005.09.054
  95. Rylski, M., Amborska, R., Zybura, K., Michaluk, P., Bielinska, B., Konopacki, F. A., Wilczynski, G. M. and Kaczmarek, L. (2009) JunB is a repressor of MMP-9 transcription in depolarized rat brain neurons. Mol. Cell Neurosci. 40, 98-110. https://doi.org/10.1016/j.mcn.2008.09.005
  96. Rylski, M., Amborska, R., Zybura, K., Mioduszewska, B., Michaluk, P., Jaworski, J. and Kaczmarek, L. (2008) Yin Yang 1 is a critical repressor of matrix metalloproteinase-9 expression in brain neurons. J. Biol. Chem. 283, 35140-35153. https://doi.org/10.1074/jbc.M804540200
  97. Sagare, A. P., Deane, R., Zetterberg, H., Wallin, A., Blennow, K. and Zlokovic, B. V. (2011) Impaired lipoprotein receptor-mediated peripheral binding of plasma amyloid-${\beta}$ is an early biomarker for mild cognitive impairment preceding Alzheimer's disease. J. Alzheimers Dis. 24, 25-34.
  98. Sagare, A., Deane, R., Bell, R. D., Johnson, B., Hamm, K., Pendu, R., Marky, A., Lenting, P. J., Wu, Z., Zarcone, T., Goate, A., Mayo, K., Perlmutter, D., Coma, M., Zhong, Z. and Zlokovic, B. V. (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat. Med. 13, 1029-1031. https://doi.org/10.1038/nm1635
  99. Saito, T., Iwata, N., Tsubuki, S., Takaki, Y., Takano, J., Huang, S. M., Suemoto, T., Higuchi, M. and Saido, T. C. (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat. Med. 11, 434-439. https://doi.org/10.1038/nm1206
  100. Savaskan, E., Hock, C., Olivieri, G., Bruttel, S., Rosenberg, C., Hulette, C. and Müller-Spahn, F. (2001) Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia. Neurobiol. Aging 22, 541-546. https://doi.org/10.1016/S0197-4580(00)00259-1
  101. Sehgal, N., Gupta, A., Valli, R. K., Joshi, S. D., Mills, J. T., Hamel, E., Khanna, P., Jain, S. C., Thakur, S. S. and Ravindranath, V. (2012) Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA 109, 3510-3515. https://doi.org/10.1073/pnas.1112209109
  102. Selkoe, D. J. (1991) Alzheimer's disease. In the beginning... Nature 354, 432-433. https://doi.org/10.1038/354432a0
  103. Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B., Holtzman, D. M., Miller, C. A., Strickland, D. K., Ghiso, J. and Zlokovic, B. V. (2000) Clearance of Alzheimer's amyloidss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489-1499. https://doi.org/10.1172/JCI10498
  104. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. and Rivest, S. (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489-502. https://doi.org/10.1016/j.neuron.2006.01.022
  105. Spencer, B., Marr, R. A., Rockenstein, E., Crews, L., Adame, A., Potkar, R., Patrick, C., Gage, F. H., Verma, I. M. and Masliah, E. (2008) Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci. 9, 109. https://doi.org/10.1186/1471-2202-9-109
  106. Tanzi, R. E. and Bertram, L. (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545-555. https://doi.org/10.1016/j.cell.2005.02.008
  107. Tucker, H. M., Kihiko, M., Caldwell, J. N., Wright, S., Kawarabayashi, T., Price, D., Walker, D., Scheff, S., McGillis, J. P., Rydel, R. E. and Estus, S. (2000) The plasmin system is induced by and degrades amyloid-beta aggregates. J. Neurosci. 20, 3937-3946.
  108. Tucker, H. M., Simpson, J., Kihiko-Ehmann, M., Younkin, L. H., McGillis, J. P., Younkin, S. G., Degen, J. L. and Estus, S. (2004) Plasmin defi ciency does not alter endogenous murine amyloid beta levels in mice. Neurosci. Lett. 368, 285-289. https://doi.org/10.1016/j.neulet.2004.07.011
  109. Viswanathan, A. and Greenberg, S. M. (2011) Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70, 871-880. https://doi.org/10.1002/ana.22516
  110. Wang, H. Y., Lee, D. H., Davis, C. B. and Shank, R. P. (2000) Amyloid peptide Abeta(1-42) binds selectively and with picomolar affi nity to alpha7 nicotinic acetylcholine receptors. J. Neurochem. 75, 1155-1161.
  111. Wang, R., Wang, S., Malter, J. S. and Wang, D. S. (2009a) Effects of 4-hydroxy-nonenal and Amyloid-beta on expression and activity of endothelin converting enzyme and insulin degrading enzyme in SH-SY5Y cells. J. Alzheimers Dis. 17, 489-501.
  112. Wang, R., Wang, S., Malter, J. S. and Wang, D. S. (2009b) Effects of HNE-modifi cation induced by Abeta on neprilysin expression and activity in SH-SY5Y cells. J. Neurochem. 108, 1072-1082. https://doi.org/10.1111/j.1471-4159.2008.05855.x
  113. Weller, R. O., Massey, A., Kuo, Y. M. and Roher, A. E. (2000) Cerebral amyloid angiopathy: accumulation of A beta in interstitial fl uid drainage pathways in Alzheimer's disease. Ann. N. Y. Acad. Sci. 903, 110-117. https://doi.org/10.1111/j.1749-6632.2000.tb06356.x
  114. Weller, R. O., Subash, M., Preston, S. D., Mazanti, I. and Carare, R. O. (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol. 18, 253-266.
  115. Wyss-Coray, T. (2006) Inflammation in Alzheimer disease: driving force, bystander or benefi cial response? Nat. Med. 12, 1005-1015.
  116. Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C. and Husemann, J. (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9, 453-457. https://doi.org/10.1038/nm838
  117. Xiao, Z. M., Sun, L., Liu, Y. M., Zhang, J. J. and Huang, J. (2009) Estrogen regulation of the neprilysin gene through a hormone-responsive element. J. Mol. Neurosci. 39, 22-26. https://doi.org/10.1007/s12031-008-9168-1
  118. Yan, P., Hu, X., Song, H., Yin, K., Bateman, R. J., Cirrito, J. R., Xiao, Q., Hsu, F. F., Turk, J. W., Xu, J., Hsu, C. Y., Holtzman, D. M. and Lee, J. M. (2006) Matrix metalloproteinase-9 degrades amyloidbeta fi brils in vitro and compact plaques in situ. J. Biol. Chem. 281, 24566-24574. https://doi.org/10.1074/jbc.M602440200
  119. Yang, L., Xu, S., Liu, C. and Su, Z. (2009) In vivo metabolism study of ginsenoside Re in rat using high-performance liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 395, 1441-1451. https://doi.org/10.1007/s00216-009-3121-1
  120. Yuyama, K., Sun, H., Mitsutake, S. and Igarashi, Y. (2012) Sphingolipid- modulated exosome secretion promotes the clearance of amyloid-${\beta}$ by microglia. J. Biol. Chem. [Epub ahead of print]
  121. Zou, L. B., Mouri, A., Iwata, N., Saido, T. C., Wang, D., Wang, M. W., Mizoguchi, H., Noda, Y. and Nabeshima, T. (2006) Inhibition of neprilysin by infusion of thiorphan into the hippocampus causes an accumulation of amyloid Beta and impairment of learning and memory. J. Pharmacol. Exp. Ther. 317, 334-340.

Cited by

  1. Effects of fermented ginseng on memory impairment and β-amyloid reduction in Alzheimer's disease experimental models vol.37, pp.1, 2013, https://doi.org/10.5142/jgr.2013.37.100
  2. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy vol.6, 2016, https://doi.org/10.1016/j.ebiom.2016.03.035
  3. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications vol.48, pp.4, 2015, https://doi.org/10.3233/JAD-150379
  4. Sleep Facilitates Clearance of Metabolites from the Brain: Glymphatic Function in Aging and Neurodegenerative Diseases vol.16, pp.6, 2013, https://doi.org/10.1089/rej.2013.1530
  5. Clearance systems in the brain—implications for Alzheimer disease vol.11, pp.8, 2015, https://doi.org/10.1038/nrneurol.2015.119
  6. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer’s disease? 2017, https://doi.org/10.1080/1061186X.2017.1354002
  7. Role of RAGE in Alzheimer’s Disease vol.36, pp.4, 2016, https://doi.org/10.1007/s10571-015-0233-3
  8. Effect ofLycoris chejuensisand Its Active Components on Experimental Models of Alzheimer’s Disease vol.63, pp.31, 2015, https://doi.org/10.1021/acs.jafc.5b00889
  9. Sleep, Cognition and Dementia vol.17, pp.12, 2015, https://doi.org/10.1007/s11920-015-0631-8
  10. Mechanisms of Aβ Clearance and Degradation by Glial Cells vol.8, 2016, https://doi.org/10.3389/fnagi.2016.00160
  11. Intracranial Arterial 4D Flow in Individuals with Mild Cognitive Impairment is Associated with Cognitive Performance and Amyloid Positivity vol.60, pp.1, 2017, https://doi.org/10.3233/JAD-170402
  12. The Translational Significance of the Neurovascular Unit vol.292, pp.3, 2017, https://doi.org/10.1074/jbc.R116.760215
  13. Stimulating the Activity of Amyloid-Beta Degrading Enzymes: A Novel Approach for the Therapeutic Manipulation of Amyloid-Beta Levels vol.54, pp.3, 2016, https://doi.org/10.3233/JAD-160492
  14. Spinosin, a C-Glucosylflavone, from Zizyphus jujuba var. spinosa Ameliorates Aβ1–42 Oligomer-Induced Memory Impairment in Mice vol.23, pp.2, 2015, https://doi.org/10.4062/biomolther.2014.110
  15. Reduction of amyloid-beta levels in mouse eye tissues by intra-vitreally delivered neprilysin vol.138, 2015, https://doi.org/10.1016/j.exer.2015.06.027
  16. The Neuroprotective Effects of Justicidin A on Amyloid Beta25–35-Induced Neuronal Cell Death Through Inhibition of Tau Hyperphosphorylation and Induction of Autophagy in SH-SY5Y Cells vol.41, pp.6, 2016, https://doi.org/10.1007/s11064-016-1857-5
  17. The Integrative Five-Fluid Circulation System in the Human Body vol.06, pp.04, 2016, https://doi.org/10.4236/ojmip.2016.64005
  18. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response vol.2017, 2017, https://doi.org/10.1155/2017/5906189
  19. Effect of conjugated linoleic acid, μ-calpain inhibitor, on pathogenesis of Alzheimer's disease vol.1831, pp.4, 2013, https://doi.org/10.1016/j.bbalip.2012.12.003
  20. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats vol.8, 2017, https://doi.org/10.3389/fphar.2017.00039
  21. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer’s Disease Pathogenesis vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0139574
  22. Resveratrol and Amyloid-Beta: Mechanistic Insights vol.9, pp.10, 2017, https://doi.org/10.3390/nu9101122
  23. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice pp.10156305, 2018, https://doi.org/10.1111/bpa.12656
  24. Hormone replacement therapy and Alzheimers disease in older women: A systematic review of literature vol.10, pp.1, 2018, https://doi.org/10.5897/JNBH2017.0148
  25. Dissecting Endoplasmic Reticulum Unfolded Protein Response (UPRER) in Managing Clandestine Modus Operandi of Alzheimer’s Disease vol.10, pp.1663-4365, 2018, https://doi.org/10.3389/fnagi.2018.00030
  26. Protein levels of ADAM10, BACE1, and PSEN1 in platelets and leukocytes of Alzheimer’s disease patients pp.1433-8491, 2018, https://doi.org/10.1007/s00406-018-0905-3
  27. Evaluation of Aβ Deposits in the Hippocampus of a Rat Model of Alzheimer’s Disease After Intravenous Injection of Human Adipose Derived Stem Cells by Immuno- and Thioflavin S-Costaining vol.In Press, pp.In Press, 2019, https://doi.org/10.5812/thrita.88367
  28. Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway vol.14, pp.6, 2012, https://doi.org/10.3892/etm.2017.5253
  29. Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the Aβ42-Treated Forebrain Spheroids Derived from Human Stem Cells vol.4, pp.8, 2012, https://doi.org/10.1021/acsbiomaterials.8b00021
  30. The potential value of capsaicin in modulating cognitive functions in a rat model of streptozotocin-induced Alzheimer’s disease vol.55, pp.1, 2012, https://doi.org/10.1186/s41983-019-0094-7
  31. Benzimidazole-derived Compounds Designed for Different Targets of Alzheimer’s Disease vol.26, pp.18, 2019, https://doi.org/10.2174/0929867326666190124123208
  32. Neuroprotective Effects of Spinosin on Recovery of Learning and Memory in a Mouse Model of Alzheimer's Disease vol.27, pp.1, 2012, https://doi.org/10.4062/biomolther.2018.051
  33. Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein vol.27, pp.3, 2012, https://doi.org/10.4062/biomolther.2018.112
  34. Autophagy Modulation as a Treatment of Amyloid Diseases vol.24, pp.18, 2012, https://doi.org/10.3390/molecules24183372
  35. Decreased plasmatic spermidine and increased spermine in mild cognitive impairment and Alzheimer’s disease patients vol.46, pp.5, 2012, https://doi.org/10.1590/0101-60830000000209
  36. Neutral Endopeptidase (Neprilysin) in Therapy and Diagnostics: Yin and Yang vol.84, pp.11, 2012, https://doi.org/10.1134/s0006297919110105
  37. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model vol.10, pp.1, 2012, https://doi.org/10.1038/s41467-019-09118-9
  38. Plasma amyloid beta level changes in aged mice with cognitive dysfunction following sevoflurane exposure vol.129, pp.None, 2012, https://doi.org/10.1016/j.exger.2019.110737
  39. Fungicide Residues Exposure and [FORMULA OMISSION] Aggregation in a Mouse Model of Alzheimer’s Disease vol.128, pp.1, 2012, https://doi.org/10.1289/ehp5550
  40. P‐glycoprotein: a role in the export of amyloid‐β in Alzheimer's disease? vol.287, pp.4, 2020, https://doi.org/10.1111/febs.15148
  41. Amyloid Beta Hypothesis in Alzheimer's Disease: Major Culprits and Recent Therapeutic Strategies vol.21, pp.2, 2012, https://doi.org/10.2174/1389450120666190806153206
  42. The Positive Side of the Alzheimer’s Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1 vol.25, pp.10, 2020, https://doi.org/10.3390/molecules25102439
  43. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues vol.31, pp.4, 2012, https://doi.org/10.1515/revneuro-2019-0089
  44. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues vol.31, pp.4, 2012, https://doi.org/10.1515/revneuro-2019-0089
  45. Comparison of Synthetic Neuronal Model Membrane Mimics in Amyloid Aggregation at Atomic Resolution vol.11, pp.13, 2020, https://doi.org/10.1021/acschemneuro.0c00166
  46. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer's disease vol.145, pp.19, 2020, https://doi.org/10.1039/d0an01373k
  47. Aluminum chloride-induced amyloid β accumulation and endoplasmic reticulum stress in rat brain are averted by melatonin vol.146, pp.None, 2012, https://doi.org/10.1016/j.fct.2020.111829
  48. Repellent Effects of Selected Organic Leaf Extracts of Tithonia diversifolia (Hemsl.) A. Gray and Vernonia lasiopus (O. Hoffman) against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/2718629
  49. Secondary Prevention of Dementia: Combining Risk Factors and Scalable Screening Technology vol.12, pp.None, 2021, https://doi.org/10.3389/fneur.2021.772836
  50. Tumour suppression through modulation of neprilysin signaling: A comprehensive review vol.891, pp.None, 2012, https://doi.org/10.1016/j.ejphar.2020.173727
  51. Blood-Brain Barrier Disruption Increases Amyloid-Related Pathology in TgSwDI Mice vol.22, pp.3, 2012, https://doi.org/10.3390/ijms22031231
  52. Periodontitis Deteriorates Cognitive Function and Impairs Neurons and Glia in a Mouse Model of Alzheimer’s Disease vol.79, pp.4, 2012, https://doi.org/10.3233/jad-201007
  53. Phagocytic Glial Cells in Brain Homeostasis vol.10, pp.6, 2012, https://doi.org/10.3390/cells10061348
  54. Idebenone Decreases Aβ Pathology by Modulating RAGE/Caspase-3 Signaling and the Aβ Degradation Enzyme NEP in a Mouse Model of AD vol.10, pp.9, 2012, https://doi.org/10.3390/biology10090938
  55. Inflammatory Cascade in Alzheimer’s Disease Pathogenesis: A Review of Experimental Findings vol.10, pp.10, 2012, https://doi.org/10.3390/cells10102581
  56. Chronic Rhinosinusitis and Alzheimer’s Disease-A Possible Role for the Nasal Microbiome in Causing Neurodegeneration in the Elderly vol.22, pp.20, 2021, https://doi.org/10.3390/ijms222011207
  57. Potent therapeutic targets for treatment of Alzheimer's disease: Amyloid degrading enzymes vol.42, pp.11, 2021, https://doi.org/10.1002/bkcs.12390
  58. Cerebral Amyloid Angiopathy and Blood-Brain Barrier Dysfunction vol.27, pp.6, 2012, https://doi.org/10.1177/1073858420954811
  59. Change in the plasma proteome associated with canine cognitive dysfunction syndrome (CCDS) in Thailand vol.17, pp.1, 2012, https://doi.org/10.1186/s12917-021-02744-w