Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0197

Moieties of Complement iC3b Recognized by the I-domain of Integrin αXβ2  

Choi, Jeongsuk (Department of Biology, Kangwon National University)
Buyannemekh, Dolgorsuren (Department of Biology, Kangwon National University)
Nham, Sang-Uk (Division of Science Education, Kangwon National University)
Abstract
Complement fragment iC3b serves as a major opsonin for facilitating phagocytosis via its interaction with complement receptors CR3 and CR4, also known by their leukocyte integrin family names, αMβ2 and αXβ2, respectively. Although there is general agreement that iC3b binds to the αM and αX I-domains of the respective β2-integrins, much less is known regarding the regions of iC3b contributing to the αX I-domain binding. In this study, using recombinant αX I-domain, as well as recombinant fragments of iC3b as candidate binding partners, we have identified two distinct binding moieties of iC3b for the αX I-domain. They are the C3 convertase-generated N-terminal segment of the C3b α'-chain (α'NT) and the factor I cleavage-generated N-terminal segment in the CUBf region of α-chain. Additionally, we have found that the CUBf segment is a novel binding moiety of iC3b for the αM I-domain. The CUBf segment shows about a 2-fold higher binding activity than the α'NT for αX I-domain. We also have shown the involvement of crucial acidic residues on the iC3b side of the interface and basic residues on the I-domain side.
Keywords
binding sites; complement; iC3b; I-domain; integrins; protein-protein interactions; ${\alpha}M{\beta}2$; ${\alpha}X{\beta}2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bajic, G., Yatime, L., Sim, R.B., Vorup-Jensen, T., and Andersen, G.R. (2013). Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc. Natl. Acad. Sci. U. S. A. 110, 16426-16431.   DOI
2 Becherer, J.D., Alsenz, J., Esparza, I., Hack, C.E., and Lambris, J.D. (1992). Segment spanning residues 727-768 of the complement C3 sequence contains a neoantigenic site and accommodates the binding of CR1, factor H, and factor B. Biochemistry 31, 1787-1794.   DOI
3 Carroll, M.C. (2004). The complement system in regulation of adaptive immunity. Nat. Immunol. 5, 981-986.   DOI
4 Choi, J., Choi, J., and Nham, S.U. (2010). Characterization of the residues of αX I-domain and ICAM-1 mediating their interactions. Mol. Cells 30, 227-234.   DOI
5 Diamond, M.S., Garcia-Aguilar, J., Bickford, J.K., Corbi, A.L., and Springer, T.A. (1993). The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031-1043.   DOI
6 Gaither, T.A., Vargas, I., Inada, S., and Frank, M.M. (1987). The complement fragment C3d facilitates phagocytosis by monocytes. Immunology 62, 405-411.
7 Gang, J., Choi, J., Lee, J.H., and Nham, S.U. (2007). Identification of critical residues for plasminogen binding by the αX I-domain of the β2 integrin, αXβ2. Mol. Cells 24, 240-246.
8 Gros, P., Milder, F.J., and Janssen, B.J. (2008). Complement driven by conformational changes. Nat. Rev. Immunol. 8, 48-58.   DOI
9 Helmy, K.Y., Katschke, K.J., Gorgani, N.N., Kljavin, N.M., Elliott, J.M., Diehl, L., Scales, S.J., Ghilardi, N., and van Lookeren Campagne, M. (2006). CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915-927.   DOI
10 Michishita, M., Videm, V., and Arnaout, M.A. (1993). A novel divalent cation-binding site in the A domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 72, 857-867.   DOI
11 Inada, S., Brown, E.J., Gaither, T.A., Hammer, C.H., Takahashi, T., and Frank, M.M. (1983). C3d receptors are expressed on human monocytes after in vitro cultivation. Proc. Natl. Acad. Sci. U. S. A. 80, 2351-2355.   DOI
12 Janssen, B.J. and Gros, P. (2007). Structural insights into the central complement component C3. Mol. Immunol. 44, 3-10.   DOI
13 Janssen, B.J., Huizinga, E.G., Raaijmakers, H.C., Roos, A., Daha, M.R., Nilsson-Ekdahl, K., Nilsson, B., and Gros, P. (2005). Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505-511.   DOI
14 Lee, J.H., Choi, J., and Nham, S.U. (2007). Critical residues of αX I-domain recognizing fibrinogen central domain. Biochem. Biophys. Res. Commun. 355, 1058-1063.   DOI
15 Lee, J.O., Rieu, P., Arnaout, M.A., and Liddington, R. (1995). Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638.   DOI
16 Luo, B.H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619-647.   DOI
17 Plow, E.F., Haas, T.A., Zhang, L., Loftus, J., and Smith, J.W. (2000). Ligand binding to integrins. J. Biol. Chem. 275, 21785-21788.   DOI
18 Myones, B.L., Dalzell, J.G., Hogg, N., and Ross, G.D. (1988). Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3. J. Clin. Invest. 82, 640-651.   DOI
19 Papanastasiou, P., Koutsogiannaki, S., Sarigiannis, Y., Geisbrecht, B.V., Ricklin, D., and Lambris, J.D. (2017). Structural implications for the formation and function of the complement effector protein iC3b. J. Immunol. 198, 3326-3335.   DOI
20 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612.   DOI
21 Ricklin, D., Hajishengallis, G., Yang, K., and Lambris, J.D. (2010). Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785-797.   DOI
22 Ross, G.D. and Medof, M.E. (1985). Membrane complement receptors specific for bound fragments of C3. Adv. Immunol. 37, 217-267.   DOI
23 Taniguchi-Sidle, A. and Isenman, D.E. (1992). Mutagenesis of the ArgGly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18). J. Biol. Chem. 267, 635-643.   DOI
24 Taniguchi-Sidle, A. and Isenman, D.E. (1994). Interactions of human complement component C3 with factor B and with complement receptors type 1 (CR1, CD35) and type 3 (CR3, CD11b/CD18) involve an acidic sequence at the N-terminus of C3 α'-chain. J. Immunol. 153, 5285-5302.
25 Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T.A. (2003). Structure and allosteric regulation of the αXβ2 integrin I domain. Proc. Natl. Acad. Sci. U. S. A. 100, 1873-1878.   DOI
26 Arnaout, M.A., Mahalingam, B., and Xiong, J.P. (2005). Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381-410.   DOI
27 Ueda, T., Rieu, P., Brayer, J., and Arnaout, M.A. (1994). Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Natl. Acad. Sci. U. S. A. 91, 10680-10684.   DOI
28 Ustinov, V.A. and Plow, E.F. (2005). Identity of the amino acid residues involved in C3bi binding to the I-domain supports a mosaic model to explain the broad ligand repertoire of integrin αMβ2. Biochemistry 44, 4357-4364.   DOI
29 Vorup-Jensen, T., Carman, C.V., Shimaoka, M., Schuck, P., Svitel, J., and Springer, T.A. (2005). Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin αXβ2. Proc. Natl. Acad. Sci. U. S. A. 102, 1614-1619.   DOI
30 Vorup-Jensen, T. and Jensen, R.K. (2018). Structural immunology of complement receptors 3 and 4. Front. Immunol. 9, 1-20.   DOI
31 Xu, S., Wang, J., Wang, J.H., and Springer, T.A. (2017). Distinct recognition of complement iC3b by integrins αXβ2 and αMβ2. Proc. Natl. Acad. Sci. U. S. A. 114, 3403-3408.   DOI