• Title/Summary/Keyword: perturbation equations

Search Result 307, Processing Time 0.02 seconds

LARGE AMPLITUDE THEORY OF A SHOCK-ACCELERATED INSTABILITY IN COMPRESSIBLE FLUIDS

  • Sohn, Sung-Ik
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2011
  • The interface between fluids of different densities is unstable under acceleration by a shock wave. A previous small amplitude linear theory for the compressible Euler equation failed to provide a quantitatively correct prediction for the growth rate of the unstable interface. In this paper, to include dominant nonlinear effects in a large amplitude regime, we present high-order perturbation equations of the Euler equation, and boundary conditions for the contact interface and shock waves.

Automatic Optimum Control of the Traffic Signal Lights (교통신호의 자동최적제어에 관한 연구)

  • 양흥석;김호윤
    • 전기의세계
    • /
    • v.20 no.4
    • /
    • pp.12-16
    • /
    • 1971
  • The electrical detector and computer systems for traffic flow and speed measurement are demonstrated in this paper. For the best traffic control optimization, linear and non-linear equations in the transition state are dealing with the perturbation of the linear car-following. In the conclusions, we construct a realizable system for the central automatic traffic control with a computer. Furthermore, fixed periodic switching system by manual with the automatic traffic control system is recommended for emergency perturbation.

  • PDF

Dynamic stability analysis of axially oscillating cantilever beams (축방향 왕복운동을 하는 외팔보의 동적 안정성 해석)

  • 현상학;유홍희
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.469-474
    • /
    • 1996
  • Dynamic stability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived and transformed into non-dimensional ones. The equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the equations, the multiple scale perturbation method is employed to obtain a stability diagram. The stability diagram shows that relatively large unstable regions exist around the frequencies of the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the diagram is proved by direct numerical simulations of the dynamic system.

  • PDF

Drift Diffusion of Radiation-produced Point Defects to Edge Dislocation

  • S. S. park;K. O. Chang;Park, S. P.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.160-165
    • /
    • 1998
  • Under the heavy irradiation, when the production and the recombination of interstitials and vacancies are included, the diffusion equations become nonlinear. An effort has been made to arrange an appropriated transformation of these nonlinear differential equations to soluble Poisson's equations, so that analytical solutions for simultaneously calculating the concentrations of interstitials and vacancies in the angular dependent Cottrell's potential of the edge dislocation have been derived from the well-known Green's theorem and perturbation theory.

  • PDF

Drift Diffusion of Radiation-produced Point Defects to Edge Dislocation

  • Park, S.S.;Chang, K.O.;Choi, S.P.;Kim, C.O.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.151-156
    • /
    • 1999
  • Under the heavy irradiation of crystalline materials when the production and the recombination of interstitials and vacancies are included, the diffusion equations become nonlinear. An effort has been made to arrange an appropriate transformation of these nonlinear differential equations to more solvable Poisson's equations, finally analytical solutions for simultaneously calculating the concentrations of interstitials and vacancies in the angular dependent Cottrell's potential of the edge dislocation have been derived from the well-known Green's theorem and perturbation theory.

  • PDF

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.

Analytic Model for Concentration Deficit Profile Caused by a Large Vegetated Area (녹지의 대기정화효과 분석을 위한 해석적 대기확산모델의 유도)

  • 김석철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.539-544
    • /
    • 2000
  • A simple analytic model is proposed here to analyze the concentration deficit field caused by a large area of vegetated area. With non-dimensional deposition velocity chosen as small parameter, the regular perturbation method is exploited to derive the mass balance equation and the dynamic equations for the concentration deficit field, Analytic solutions to those equations are obtained in a closed form for several cases of interest, assuming that the concentration field is stationary and the plume can be nicely approximated as Gaussian for a point source. The results suggest that quite a negligible fraction (less than 1%) of the gaseous air pollutants emitted into the air is removed by the vegetated area of which width is 4 km in wind-wise direction, the typical dimension of the Restricted Development Zones around the metropolitan regions in South Korea.

  • PDF

Long Waves Generated by Short Wave Groups over a Step: Governing Equations (계단지형을 지나는 파군에 의한 장파의 생성: 지배방정식)

  • Jo, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.651-657
    • /
    • 2001
  • The second-order long waves generated by short wave groups propagating over a step are theoretically investigated. The diffraction of short waves is firstly formulated and the governing equations of second-order long waves are then derived by using a multiple-scale perturbation method. It is observed that free and locked long waves are generated and propagated with different velocities.

  • PDF

Vibration Analysis of an Automatic Ball Balancer with Double Races (이중레이스를 갖는 자동평형장치의 진동해석)

  • Lee, Dong-Jin;Jeong, Jin-Tae;Hwang, Cheol-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1093-1102
    • /
    • 2000
  • Dynamic behaviors are analyzed for an automatic ball balancer with double races which is a device to reduce eccentricity of rotors. Equations of motion are derived by using the polar coordinate sys tem instead of the rectangular coordinate system which is used in other previous researches. To analyze the stability around equilibrium positions, the perturbation method is used. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

Random Vibration Analysis of Nonlinear Structure System using Perturbation Method

  • Moon, Byung-Young;Kang, Beom-Soo;Kang, Gyung-Ju
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.243-250
    • /
    • 2001
  • Industrial machines are sometimes exposed to the danger of earthquake. In the design of a mechanical system, this factor should be accounted for from the viewpoint of reliability. A method to analyze a complex nonlinear structure system under random excitation is proposed. First, the actual random excitation, such as earthquake, is approximated to the corresponding Gaussian process far the statistical analysis. The modal equations of overall system are expanded sequentially. Then, the perturbed equations are synthesized into the overall system and solved in probabilistic way. Several statistical properties of a random process that are of interest in random vibration applications are reviewed in accordance with nonlinear stochastic problem. The obtained statistical properties of the nonlinear random vibration are evaluated in each substructure. Comparing with the results of the numerical simulation proved the efficiency of the proposed method.

  • PDF