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Abstract

Under the heavy irradiation of crystalline materials, when the production and the

recombination of interstitials and vacancies are included, the diffusion equations become

nonlinear. An effort has been made to arrange an appropriate transformation of these

nonlinear differential equations to more solvable Poisson’ s equations, finally analytical solutions

for simultaneously calculating the concentrations of interstitials and vacancies in the angular

dependent Cottrell' s potential of the edge dislocation have been derived from the well-known

Green’ s theorem and perturbation theory.
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1..Introduction

When the solid material is irradiated by the
energetic particles, the equal numbers of the
interstitials and vacancies (hereafter denoted by i
and v) are produced in the matrix. As the
concentrations of i and v are increased, they will
be recombined significantly by each other as well
as absorbed by the sinks such as grain boundaries,
dislocations, external surfaces, etc.

It is particularly known that the dislocation
absorbs i more preferentially than v, so that the
excess v will be built up in a certain region of

matrix. Vacancy cluster evolution in metals under

151

irradiation has been studied by various authors for
decades.[1-8] But it is frequently argued that the
nucleation and growth of such points defects
clusters would be favored in the region where the
elastic interaction between the dislocation and
interstitials is attractive.[1-3]

In order to figure out the possibility of such
phenomena, one should solve the appropriate
diffusion equations with an assumption that such
phenomena are associated with diffusion of i and v
under the conditions mentioned above. In doing
so, one will encounter a couple of difficulties: First,
when the production and recombination of i and v

are included, the diffusion equations become
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nonlinear. Second, the interaction potential (e.g.
the Cottrell' s potential) of the edge dislocation is
angularly dependent. Those problems are
troublesome, hence some workers in the field have
omitted all or some of them|[9-12]. In fact, both
aspects should be included and these nonlinear
differential equations need to be solved as we will
show in the following sections. Some others did
include these aspects but calculated the results
numerically[13-14]. Since the production and
recombination of i and v are very important
physical processes, the omission of them can
result in serious errors in understanding and
interpreting the observations.

This paper presents an analytical solution for
calculating the concentrations of i and v
simultaneously in angularly dependent Cottrel’ s
potential field of the edge dislocation during heavy
irradiation by means of the well-known Green
theorem and the perturbation theory. The
transformation of nonlinear diffusion equations to
the solvable equation and applicability of
perturbation theory will be examined in Sec. 2.
The boundary conditions and the Green theorem
will be discussed in Sec. 3.

2. Diffusion Equations and Their
Transformation to Solvable Equations

2.1 Nonlinear Diffusion Equations
When the recombination of i and v becomes

significant, the concentrations of i and v should
satisfy

oC : N
/;t =-V.d, +n R,.VC,.C‘, (1a)
ocC,

5=V, +a-R,CC, (1b)

where f is the production rate of i and v by the

irradiation, R, is the recombination rate of i and v,
and C, is the concentration of the a-type defect (@
denotes i or v). In Eq.(1a) and (1b), the thermal
generation of i and v was neglected in compared
with #

Substitution of the current density{15],

3, =-D,(VC,+BC, V4, ). @
in the cottrell’ s potential of the edge dislocation
‘P,., where

¢, =K, (cos0/r) 3)
with

Ke :(g%)go““w @

for Eq.(1a) and (1b) gives, at the quasi-steady state

conditions,
D(V?C, +BCV4,)+n-R,CC, =0 (5a)
D,(V’C, + BC,V4,)+ii~R,CC, =0 1 (5b)

where D, is the diffusion coefficient of a-type
defects[16]; kgT= 1/8 is the usual meaning of
thermal energy; #, b, v, £, and Aa. are the
shear modulus, the Burgers vector, the Poisson’ s
ratio, the atomic volume, and the dilation {in unit
of ) due to the a-type defect respectively; and
x(r,0) is the polar coordinate of the defect with
respect to the edge dislocation with the angle 8
measured from its extra plane. In these Eq. (5a)
and (5b), we neglected the dislocation movement
due to absorption of i and v.

2.2. Transformation to Solvable Equations

For simplicity, taking
R=r,/(DD). o
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DC-(i/ R)2(1-5), @)

a,-(AR): ®)

and z = aur, 9)
then

(V2-1)S. =-pvS,-Vg +5,(1-S,) (10a)

(V2-1)S,= -pVS,-Vg,+8,(1-8,) (10b)

It will be discussed in Sec.3.3. that the right-hand
sides of Eq. (10a) and (10b) are small enough to be
treated as the perturbation.

The differential equation,

(v -1)s=0, (11)

does not look like Laplace equation. However,
since S(z) is axially independent, the equation is

adjustable to be the modified Bessel function.
3. Analytical Solutions

3.1 Boundary Conditions

Generally speaking, the defects would jump by a
distance d (the jumping distance) per a jump.
However, as the closer they approach to the
dislocation, the larger the elastic interaction
becomes. When they reach at a certain distance,
they would jump directly to the center through the
rapid rearrangement of lattice atoms near the
dislocation core. It is referred to as the “core
radius”, which is the inner boundary. In such a
case, the migration energy of the defects inside
the core radius is smaller than the thermal energy
as shown in Fig. 1. It is therefore true that the

core radius is dependent upon the various

Lattice Potential

E<k,T

Core Radius
Dualocation |-——
Core

Distance from the Core, r

Fig. 1. Lattice Potential Near the Dislocation
Core

parameters including the temperature, the
interaction strength, etc.

From the reason mentioned above, the
boundary condition on the inner surface (ro: the

core radius) can be naturally

Cr)=0 o S,(n)=1 (12)

On the other hand, the condition on the outer
boundary surface (r,: the mid-point between
dislocations) is

oc,
or

=0 or a‘aa’,

ron

=0 (13)

rn

which is true only when the perturbations (right-
hand sides of Eq. (10)) are not taken into account.
However, when the interaction between the
dislocation and point defects is considered, there
are some amount of flow-in and flow-out of i and v
(referred to as “drift diffusion”) through the outer
boundary surface.

3.2. Analytical Solutions

In order to apply Green theorem and
perturbation theory, we expend §(z ) and S.z ) in
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the space where cosf is one of the eigen-
functions, that is,

w0

S,@)= SR

(14a)
= F(z) +2).FA2)cosn6
n=\

and
S,(z)=H,(2) +2 i H(z)cosn6 . (14b)
n=1

Then the differential equation for i [Eq.(10a)]
becomes

& 10 :
{EZ.Z_,L;E;_(H%HE(::F—4zrp,(z) (15)

where
pa(2)= pi(2)+p(2) (16)
with,
it =—%’f§—’(ﬁ. +%—QFL, +h —(32—0&,} (17)
p5(z)=»i[Ho(l-E,)—ZgFMHM], (18a)
and

pi(2)=-— [Hn - (FH,..+ FM,H,)] (18b)
4 o
for n>1.

In Eq.{(17), the prime denotes the derivative with
respect to z.
The solutions are

F(=v, @+ £+ £(2) (19)

where ¥,(2) are the general solutions of

gt 19 2
Lazz +;3;‘(‘+'§7ﬂ”’~"’=° (20

which is the modified Bessel function, f?(z) are the
special functions due to the drift diffusion
associated with p{(z), and fi(z) are that (refer to as
recombination) related with 2:(z) We have the
corresponding solutions for v as

H(2) =y, (2 +h(2)+R(2). 1)

Among ¥,(z), only one that satisfied the
boundary conditions (Eqgs. (12) and {13}) is

K, (zb)[{)(z) + I](zb)KO(z)

S P TA P Y A o B
and others, which do not satisfy, are
V. (2=0 for n>1
We first find a Green function,
Gar)= 2g,(2)e" " (23)

n=-wo

which satisfies
12(.2) e - <e80
z 0z i Oz z ) - z (24)

where z is the position vector.

If we follow the processes{17], the radial Green’ s
function should satisfy

[EEN0 PR Ry

and the solutions for the Dirichlet boundary
condition are

8.(z2) = 4,[1,(z0)K,(z.) - K, (20)1,(z.)]

)k (e)- K (a)(e)]

(26)

and

4,=2/[1,(2)K(z) - K.(2)1.(z)]
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where z5(z<) is the larger (smaller) of z and z”.

Green'’ s second identity ;
: d 9|
J-V[¢V2W_V/V2¢]d3x :§S|i¢—§—n—'_w%:lda 27

where the right-hand side of Eq.{27) is the
potentials due to a surface charge density and a
dipole layer in the electrostatics. Since we do not
have a contribution corresponding to such as
deposited interstitials and vacancies on the
boundary surfaces in this case of diffusion, it tells
immediately from (27) that

[lovw -w¥igla’x =0,
which can be rewritten as
[ oV =y -y (v - Ygld’x'=0. (28)

If we put ¥=Glz,2z’) and #=S(z), the special
solutions are given by

14D =[g(e2)pie)ed (299
and
1@ =g z2)pi(@)dz . (2o

So that, from Eq.{19), we conclude

F(2) = wo(2) + 17 (2) + £ (2)
F(2)= £+ £, (2)

for n>1. (30b)

H.(z) for v can be easily obtained by exchanging
the interaction strength K, in g (2) (Eq. (17)} for K..
As the results, H.(z) have also been done as soon

as F.(z) have been calculated.

10
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Fig. 2. Value of S, (1—S), and S{(1—S)

3.3. Perturbations

The first term (drift term} in the right- hand side
of Eq. (10) is small in the region under
consideration since the region, where the
interaction field is large, is excluded by the
dislocation core. The second term (recombination
term) is also small since S<1 and (1-S)<1, so
that the value of is smaller than the smaller of
and (1 -S). As the results, the maximum value of
S(1-S8) is 0.25 as shown in Fig. 2 since S is

almost equal to ¥,.
4. Conclusions

Since drift term (interaction term) and
recombination term are small enough for S(z) to
be ¥,(z) at the zero order approximation, which is
the case of Eq. (11), fi(z) and fiz) are calculated
through Eq. (29a) and (29b). If fi{z) and fifz) are
small sufficiently (they are expected to be so), fu(z)
and fi(z), all for n>1 can be evaluated with ¥y(z)
only until they converge.

The numerical evaluation will be presented in

another paper.
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