
J. Appl. Math. & Informatics Vol. 31(2013), No. 1 - 2, pp. 131 - 145
Website: http://www.kcam.biz

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY

PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS

WITH A SMALL NEGATIVE SHIFT†

R. NAGESHWAR RAO AND P. PRAMOD CHAKRAVARTHY∗

Abstract. In this paper, we present an initial value technique for solving
singularly perturbed differential difference equations with a boundary layer
at one end point. Taylor’s series is used to tackle the terms containing shift
provided the shift is of small order of singular perturbation parameter and
obtained a singularly perturbed boundary value problem. This singularly
perturbed boundary value problem is replaced by a pair of initial value
problems. Classical fourth order Runge–Kutta method is used to solve
these initial value problems. The effect of small shift on the boundary
layer solution in both the cases, i.e., the boundary layer on the left side

as well as the right side is discussed by considering numerical experiments.
Several numerical examples are solved to demonstate the applicability of
the method.
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1. Introduction

The numerical treatment of singular perturbations is far from the trivial be-
cause of the boundary layer behavior. In recent decades this is a field of increas-
ing interest to applied mathematicians and numerical analysts in view of the
challenges the problems there in pose to the researchers. For a detailed theory
and analytical discussion on singular perturbation problems one may refer to
the books and high level monographs: O’ Malley [13], Nayfeh [12], Kevorkian
and Cole [11], Bender and Orszag [10]. A Singularly perturbed delay differential
equation is an ordinary differential equation in which the highest derivative is
multiplied by a small parameter and involving atleast one delay term. In 1979,
the Japanese physicist Kensuke Ikeda considered a nonlinear absorbing medium
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containing two-level atoms placed in a ring cavity and subject to a constant
input of light. If the total length of the cavity is sufficiently large, the optical
system undergoes a time delayed feedback that destabilizes its steady state out-
put. The phenomena has been formulated as a differential difference equation
which was known as Ikeda DDE. In Besancon (France), work has been done on
a delayed optical system where the dynamical variable is the wavelength. An
improved device using a tunable DBR laser was then realized. This experience
then led to the development of a system based on coherence modulation. The
dynamical variable is the optical-path difference in a coherent modulator driven
electrically by a nonlinear delayed feedback loop. The system is realized from
an MZ coherence modulator powered by a short coherence source and driven by
a nonlinear feedback loop that contains a second MZ interferometer and a delay
line. In dimensionless variables, the response of the system is described by a
differential difference equation.

Delay differential equations appear in fluid mechanics when some memory
effects need to be taken into account. For example, in the case of vertical water
fountains exhibiting oscillatory motion of their tips, the pressure at the orifice
of the jet is related to its instantaneous height and its variation oscillates with
a dominant period. If the fountain is oriented slightly away from the vertical,
the back flow is no longer possible and the jet describes a parabola with a fixed
maximum elevation. The gravity-induced back flow is thus essential for the onset
of the oscillatory behavior. The oscillations were found to be the result of the
interplay between linear growth and a delayed nonlinear saturation and in turn
the mathematical model describing the phenomena is a differential difference
equation where the delay is the transit time through the recirculation loop. For
detailed discussion one may refer Thomas Erneux [14].

In recent years, there has been a growing interest in the numerical treatment
of differential difference equations. This is also due to the occurrence of these
types of differential equations in various fields such as epidemics, population
dynamics [9], where the small delay play an important role in the modeling of
the real life phenomena. For example, in depolarization in the Stein’s model
[7] which is a continuous time, continuous state space Markov process whose
sample paths have discontinuities of the first kind [8]. The time between nerve
impulses is the time of first passage to a level at or above a threshold value,
determining the moments of this random variable involves differential difference
equations. In [5], Lange and Miura considered the problem of determining the
expected time for the generation of action potentials in nerve cells by random
synaptic inputs in the dendrites which was formulated as a general boundary
value problem for the linear second order differential difference equation. This
biological model motivated them towards the study of boundary value problems
for singularly perturbed differential difference equations with small shifts. They
gave an asymptotic approach to the solution of boundary value problems for two
classes of singularly perturbed differential difference equations with small shifts.
Lange and Miura[6] have shown the effect of very small shifts on the solution
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and pointed out that they drastically affect the solution and therefore cannot
be neglected. Kadalbajoo and Sharma[1] presented a numerical approach to
solve the boundary value problem for singularly perturbed differential difference
equation with a negative shift in the differentiated term. The shifted term was
approximated by Taylor series as the shifts were of o(ǫ) and hence the effects of
small shifts on the boundary layer solution of the problem were illustrated. In [4]
they presented a parameter uniform numerical difference scheme based on finite
differences on piecewise uniform mesh to solve boundary value problem for singu-
larly perturbed differential difference equations of convection-diffusion type with
small delay. The concept of replacing singularly perturbed two-point boundary
value problem by an initial-value problem is presented by Kadalbajoo and Reddy
[2] and pair of initial value problems by Reddy and Pramod Chakravarthy [3].
Kadalbajoo and Devendra Kumar [15] discussed a computational method for
a singularly perturbed nonlinear differential equation with a small shift. They
used quasilinearization method to convert the nonlinear problem into a sequence
of linear problems. To tackle the delay term they used Taylor’s series expansion
on sequence of linear problems.

In this paper we present an Initial value technique to solve the boundary value
problem for singularly perturbed differential difference equation which contains
only negative shift in the differentiated term, provided the shifts are of o(ǫ).
We first approximate the shifted term by Taylor series so that the boundary
value problem of singularly perturbed differential difference equation is converted
to a singularly perturbed ordinary differential equation. This boundary value
problem is then replaced by a pair of initial value problems. Classical fourth
order Runge-Kutta method is used to solve these initial value problems. In fact
any standard analytical or numerical method can be used. The effect of small
shift on the boundary layer solution in both the cases, i.e., the boundary layer
on the left side as well as the right side is discussed by considering numerical
experiments. Several numerical examples are solved using the presented method,
compared the computed result with exact solution and plotted the graphs of the
solution of the problems.

2. Initial value technique

To describe the method, we consider a linear singularly perturbed differential-
difference equation, which contains only negative shift in the convection term
[5, 6]

ǫy′′(x) + a(x)y′(x− δ) + b(x)y(x) = f(x) (2.1)

on 0 < x < 1, 0 < ǫ ≪ 1, subject to the interval and boundary conditions

y(x) = φ(x), −δ ≤ x ≤ 0

y(1) = β
(2.2)
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where a(x), b(x), f(x) and φ(x) are smooth functions, β is a constant and δ(ǫ) is
a small shifting parameter. For δ = 0, the problem (2.1,2.2) is a singularly per-
turbed differential equation. We further assume that a(x) ≥ M > 0 throughout
the interval [0,1], where M is some positive constant. This assumption implies
that the boundary layer will be in the neighborhood of x = 0. We set δ = τǫ with
τ = O(1). If τ is not too large, the layer structure is modified but maintained
at the same end (C.G. Lange and R.M. Miura [5]).

We expand the retarded term y′(x − δ) by Taylor series which converts the
singularly perturbed differential difference equation to a singularly perturbed
ordinary differential equation. By Taylor series expansion, we have

y′(x− δ) ≈ y′(x) − δy′′(x) (2.3)

By substituting (2.23) in (2.21) and considering δ = τǫ we have

ǫy′′(x) +
a(x)

(1− τa(x))
y′(x) +

b(x)

(1− τa(x))
y(x) =

f(x)

(1− τa(x))
(2.4)

Hence, we have the boundary value problem of the form

ǫy′′(x) + ã(x)y′(x) + b̃(x)y(x) = f̃(x) (2.5)

on 0 < x < 1, 0 < ǫ ≪ 1, subject to the boundary conditions

y(0) = φ(0) and y(1) = β (2.6)

where ã(x) = a(x)
(1−τa(x)) , b̃(x) = b(x)

(1−τa(x)) , and f̃(x) = f(x)
(1−τa(x)) .

The initial value technique consists of the following steps:
Step1. Obtain the reduced problem by setting ǫ = 0 in equation (2.5) and

solve it for the solution with the appropriate boundary condition. Let y0(x) be
the solution of the reduced problem of (2.5)-(2.6), i.e.;

ã(x)y0(x) + b̃(x)y0(x) = f̃(x) (2.7)

y0(1) = β (2.8)

Step 2. Setup the two first order equations equivalent to the equation (2.5)
as follows:

z′(x) + [b̃(x) − ã′(x)]y(x) = f̃(x), (2.9)

ǫy′(x) + ã(x)y(x) = z(x) (2.10)

Step 3. Setup the initial conditions as follows:
Using y0(x), the solution of the reduced problem, in equation (2.10) we have

z(1) = ǫy′0(1) + ã(1)y0(1) (2.11)

This will be the initial condition for equation (2.9) and y(0) = φ(0) will be the
initial condition for equation (2.10).

Step 4. Get the pair of initial value problems as follows: Replacing y(x) by
y0(x) in (2.9), we get

z′(x) + [b̃(x)− ã′(x)]y0(x) = f̃(x) (2.12)
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Now the differential equation (2.12) with the condition (2.11) constitute an
initial value problem and the differential equation (2.10) with the condition
y(0) = φ(0) constitute another initial value problem.

Therefore the pair of initial value problems corresponding to (2.5)-(2.6) are
given by

(IVP 1) z
′(x) + [̃b(x)− ã

′(x)]y0(x) = f̃(x) with z(1) = ǫy
′

0(1) + ã(1)y0(1) (2.13)

(IVP 2) ǫy
′(x) + ã(x)y(x) = z(x) with y(0) = φ(0) (2.14)

Thus in a manner of speaking, we have replaced the original boundary value
problem (2.5)-(2.6) by a pair of initial value problems. The integration of these
initial value problems goes in opposite direction, and the second problem is
solved only if the solution of the first one is known. We solve these initial value
problems (2.13)-(2.14) to obtain the solution over the interval [0, 1]. There now
exist a number of efficient methods for the solution of initial value problems. In
order to solve the initial value problems in our numerical experimentation, we
make use of classical fourth order Runge-Kutta method. In fact, any standard
analytical or numerical method can be used.

2.1. Linear examples with left layer. To demonstrate the applicability of
Initial value technique, we have applied it to two linear singularly perturbed
differential difference equations with a small shift and the boundary layer being
to the left of the domain. These examples have been chosen because they have
been widely discussed in literature and for some examples approximate solutions
are available for comparison.

Example 1. We consider the following singularly perturbed linear differential-
difference equation

ǫy′′(x) + y′(x− δ)− y(x) = 0

under the interval and boundary conditions

y(x) = 1; −δ ≤ x ≤ 0 ; y(1) = 1

For δ = o(ǫ), the approximate solution available for comparison is

y(x) =
(1 − em2)em1x + (em1 − 1)em2x

em1 − em2

,

where m1
−1−

√
1+4(ǫ−δ)

2(ǫ−δ) and m2 =
−1+

√
1+4(ǫ−δ)

2(ǫ−δ)

Expanding the retarded term y′(x − δ) by Taylor series,

y′(x− δ) ≈ y′(x) − δy′′(x)

and considering δ = τǫ we have the modified problem

ǫy′′(x) +
1

1− τ
y′(x) − 1

1− τ
y(x) = 0 (2.15)

subject to the conditions
y(0) = 1; y(1) = 1 (2.16)
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The reduced problem corresponding to (2.15)-(2.16) is

y′0 − y0 = 0, y0(1) = 1

whose solution is y0 = ex−1.

Hence, the set of initial value problems corresponding to (2.15)-(2.16) are

(IVP 1) z′(x) − ex−1

1−τ = 0; z(1) = ǫ+ 1
1−τ

(IVP 2) ǫy′(x) + 1
1−τ y(x) = z(x); y(0) = 1

The numerical results are given in table 1 and coresponding graphs in figures
(2.1)-(2.2)

Example 2. We consider the following singularly perturbed linear differential-
difference equation

ǫy′′(x) + e−x/2y′(x − δ)− y(x) = 0

under the interval and boundary conditions

y(x) = 1; −δ ≤ x ≤ 0 ; y(1) = 1

The exact solution is not known for this example.
Expanding the retarded term y′(x − δ) by Taylor series,

y′(x− δ) ≈ y′(x) − δy′′(x)

and considering δ = τǫ we have the modified problem

ǫy′′(x) +
e−x/2

(
1− τe−x/2

)y′(x) − 1(
1− τe−x/2

)y(x) = 0 (2.17)

subject to the conditions

y(0) = 1; y(1) = 1 (2.18)

The reduced problem corresponding to (2.17)-(2.18) is

y′0 − ex/2y0 = 0, y0(1) = 1

whose solution is y0 = exp
[
2
(
ex/2 − e1/2

)]

Hence, the set of initial value problems corresponding to (2.17)-(2.18) are

(IVP 1) z
′(x) +

[

−

1

1− τe−x/2
+

e−x/2

2 (1− τe−x/2)
2

]

exp
[

2
(

e
x/2

− e
1/2

)]

= 0 ;

z(1) = ǫe
1/2 +

e−1/2

1− τe−1/2

(IVP 2) ǫy
′(x) +

e−x/2

1− τe−x/2
y(x) = z(x); y(0) = 1

The numerical results are given in tables 2 and corresponding graph in figure
(2.3)
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Figure 2.1. Graph of the solution of the example 1 for ǫ = 0.1
and different values of δ
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Figure 2.2. Graph of the solution of the example 1 for ǫ = 0.01
and different values of δ

2.2. Right End Boundary Layer Problems. Now we assume that a(x) ≤
M < 0 throughout the interval [0, 1], where M is a constant. This assumption
implies that the boundary layer will be in the neighborhood of x=1 for the
singularly perturbed differential difference equation (2.1)-(2.2). We set δ = τǫ

with τ = O(1).
The initial value technique consists of the following steps:
Step1. Obtain the reduced problem by setting ǫ = 0 in equation (2.5) and

solve it for the solution with the appropriate boundary condition. Let y0(x) be
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Figure 2.3. Graph of the solution of the example 2 for ǫ = 0.01
and different values of δ

Table 1. Numerical Results of Example 1 with ǫ = 10−3, δ =
0.0004, h = 10−4

x Numerical Solution Exact Solution
0.0000 1.0000000 1.0000000
0.0001 0.9030536 0.9029751
0.0002 0.8209958 0.8208592
0.0003 0.751541 0.7513622
0.0004 0.6927543 0.6925458
0.0005 0.642998 0.6427694
0.0010 0.4879487 0.4876993
0.0050 0.3702536 0.3700951
0.0100 0.3719539 0.3717972
0.0500 0.3871091 0.3869613
0.1000 0.4069259 0.4067890
0.2000 0.4496596 0.4495444
0.3000 0.4968876 0.4967937
0.4000 0.5490826 0.5490090
0.5000 0.606767 0.6067124
0.6000 0.6705181 0.6704807
0.7000 0.7409740 0.7409514
0.8000 0.8188398 0.8188289
0.9000 0.9048948 0.9048916
1.0000 1.0000000 1.0000000
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Table 2. Numerical Results of Example 2 with ǫ = 10−3, h =
10−3 for different values of δ

x Numerical Solution
δ = 0 δ = 0.0002 δ = 0.0004 δ = 0.0006

0.000 1.0000000 1.0000000 1.0000000 1.0000000
0.001 0.5469622 0.4977724 0.4718476 0.7438532
0.002 0.3772521 0.3435459 0.3283316 0.5768190
0.003 0.3137571 0.2962924 0.2894893 0.4684561
0.004 0.2900983 0.2819389 0.2791255 0.3985296
0.005 0.2813869 0.2777096 0.2765081 0.3536586
0.020 0.2801579 0.2798844 0.2796111 0.2793874
0.040 0.2858806 0.2856089 0.2853372 0.2850657
0.060 0.2917795 0.2915096 0.2912397 0.2909699
0.080 0.2978612 0.2975931 0.2973251 0.2970572
0.100 0.3041326 0.3038665 0.3036004 0.3033344
0.200 0.3386029 0.3383476 0.3380924 0.3378372
0.300 0.3790610 0.3788189 0.3785768 0.3783348
0.400 0.4268172 0.4265911 0.4263651 0.4261392
0.500 0.4835252 0.4833189 0.4831127 0.4829066
0.600 0.5512866 0.5511048 0.5509231 0.5507416
0.700 0.6327912 0.6326400 0.6324889 0.6323379
0.800 0.7315078 0.7313950 0.7312823 0.7311698
0.900 0.8519448 0.8518805 0.8518165 0.8517528
1.000 1.0000096 1.0000074 1.0000056 1.0000040

the solution of the reduced problem of (2.5)-( 2.6), i.e.;

ã(x)y′0(x) + b̃(x)y0(x) = f̃(x) (2.19)

with y0(0) = φ(0) (2.20)

Step 2. Setup the two first order equations equivalent to the equation (2.5)
as follows:

z′(x) + [b̃(x)− ã′(x)]y(x) = f̃(x) (2.21)

and ǫy′(x) + ã(x)y(x) = z(x) (2.22)

Step 3. Setup the initial conditions as follows:
Using y0(x), the solution of the reduced problem, in equation (2.22) we have

z(0) = ǫy′0(0) + ã(0)y0(0) (2.23)

This will be the initial condition for equation (2.21) and y(1) = β will be the
initial condition for equation (2.22).

Step 4. Get the pair of initial value problems as follows:
Replacing y(x) by y0(x) in (2.21), we get

z′(x) + [b̃(x)− ã′(x)]y0(x) = f̃(x) (2.24)
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Now the differential equation (2.24) with the condition (2.23) constitute an
initial value problem and the differential equation (2.22) with the condition
y(1) = β constitute another initial value problem.

Therefore the pair of initial value problems corresponding to (2.5)-(2.6) are
given by

(IVP 1) z′(x)+[b̃(x)−ã′(x)]y0(x) = f̃(x) with z(0)=ǫy′0(0)+ã(0)y0(0) (2.25)

(IVP 2) ǫy′(x)+ã(x)y(x)=z(x) with y(1)=β (2.26)

Thus in a manner of speaking, we have replaced the original boundary value
problem (2.5)-(2.6) by a pair of initial value problems. The integration of these
initial value problems goes in opposite direction, and the second problem is
solved only if the solution of the first one is known. We solve these initial value
problems (2.25)-(2.26) to obtain the solution over the interval [0, 1]. There now
exist a number of efficient methods for the solution of initial value problems. In
order to solve the initial value problems in our numerical experimentation, we
make use of classical fourth order Runge-Kutta method. Infact, any standard
analytical or numerical method can be used.

2.3. Linear examples with right layer. To demonstrate the applicability
of the method, we have applied it to two linear singularly perturbed differential
difference equations with a small shift and the boundary layer being to the
right of the domain. These examples have been chosen because they have been
widely discussed in literature and because approximate solutions are available
for comparison.

Example 3. We consider the following singularly perturbed linear differential-
difference equation

ǫy′′(x) − y′(x− δ)− y(x) = 0

under the interval and boundary conditions

y(x) = 1; −δ ≤ x ≤ 0 ; y(1) = −1

For δ = o(ǫ), the approximate solution available for comparison is

y(x) =
−(1 + em2)em1x + (1 + em1)em2x

em1 − em2

,

where m1
−1−

√
1+4(ǫ+δ)

2(ǫ+δ) and m2 =
−1+

√
1+4(ǫ+δ)

2(ǫ+δ)

Expanding the retarded term y′(x − δ) by Taylor series,

y′(x− δ) ≈ y′(x) − δy′′(x)

and considering δ = τǫ we have the modified problem

ǫy′′(x) − 1

1 + τ
y′(x) − 1

1 + τ
y(x) = 0 (2.27)

subject to the conditions

y(0) = 1; y(1) = −1 (2.28)
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The reduced problem corresponding to (2.27)-(2.28) is

y′0 + y0 = 0, y0(0) = 1

whose solution is y0 = e−x.

Hence, the set of initial value problems corresponding to (2.27)-(2.28) are

(IVP 1) z′(x)− e−x

1+τ = 0; z(0) = −ǫ− 1
1+τ

(IVP 2) ǫy′(x)− 1
1+τ y(x) = z(x); y(1) = −1

The numerical results are given in table 3 and corresponding graphs in figures
(2.4)-(2.5).

Example 4. We consider the following singularly perturbed linear differential-
difference equation

ǫy′′(x) − e−xy′(x− δ)− xy(x) = 0

under the interval and boundary conditions

y(x) = 1; −δ ≤ x ≤ 0 ; y(1) = 1

The exact solution is not known.
Expanding the retarded term y′(x − δ) by Taylor series,

y′(x− δ) ≈ y′(x) − δy′′(x)

and considering δ = τǫ we have the modified problem

ǫy′′(x) − e−x

(1 + τe−x)
y′(x) − x

(1 + τe−x)
y(x) = 0 (2.29)

subject to the conditions
y(0) = 1; y(1) = 1 (2.30)

The reduced problem corresponding to (2.29)-(2.30) is

y′0 + xexy0 = 0, y0(0) = 1

whose solution is y0 = exp {−1− (x− 1)ex}
Hence, the set of initial value problems corresponding to (2.29)-(2.30) are

(IVP 1) z′(x)−
[

x
1+τe−x

+ e−x

(1+τe−x)2

]
exp [−1− (x− 1)ex] = 0; z(0) = − 1

1+τ

(IVP 2) ǫy′(x)− e−x

(1+τe−x)y(x) = z(x); y(1) = 1

The numerical results are given in table 4 and corresponding graph in figure
(2.6).

3. Discussion and conclusions

We have presented an initial value technique for solving singularly perturbed
differential difference equations with a boundary layer at one end point. The shift
term is approximated by Taylor series which converts the singularly perturbed
differential difference equation to a singularly perturbed ordinary differential
equation. The solution of this singularly perturbed boundary value problem
is computed numerically by solving a pair of initial value problems, which are
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Figure 2.4. Graph of the solution of the example 3 for ǫ = 0.1
and different values of δ
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Figure 2.5. Graph of the solution of the example 3 for ǫ = 0.01
and different values of δ

deduced from the original problem. This method is very easy to implement
on any computer with minimum problem preparation. We have implemented
the present method on two linear examples with left-end boundary layer and
two examples with right-end boundary layer by taking different values of ǫ.To
solve the initial value problems we used the classical fourth order Runge-Kutta
method. Infact any standard analytical or numerical method can be used. Com-
putational results are presented in tables. The graphs are plotted to illustrate
the behavior of the solution. The approximate solution is compared with exact
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Figure 2.6. Graph of the solution of the example 4 for ǫ = 0.01
and different values of δ

Table 3. Numerical Results of Example 3 with ǫ = 0.001, δ =
0.0006, h = 10−4

x Numerical Solution Exact Solution
0.0000 1.0000000 1.0000000
0.1000 0.904992 0.9049817
0.2000 0.8190229 0.8189920
0.3000 0.7412348 0.7411728
0.4000 0.6708493 0.6707478
0.5000 0.6071618 0.6070145
0.6000 0.5495349 0.5493371
0.7000 0.497392 0.4971400
0.8000 0.4502112 0.4499026
0.9000 0.4075202 0.4071537
0.9500 0.3877232 0.3873274
0.9900 0.3699405 0.3695484
0.9950 0.3105879 0.3104847
0.9990 -0.3634558 -0.3629102
0.9995 -0.6324272 -0.6320255
0.9996 -0.6970553 -0.6967067
0.9997 -0.7658492 -0.7655640
0.9998 -0.8390775 -0.8388671
0.9999 -0.9170263 -0.9169033
1.0000 -1.0000000 -1.0000000
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Table 4. Numerical Results of Example 4 with ǫ = 10−3, h =
10−3 for different values of δ

x Numerical Solution
δ = 0 δ = 0.0002 δ = 0.0004 δ = 0.0006

0.000 1.0000000 1.0000000 1.0000000 1.0000000
0.100 0.9945450 0.9945224 0.9944997 0.9944769
0.200 0.9770879 0.9770393 0.9769907 0.9769419
0.300 0.9458708 0.9457932 0.9457154 0.9456376
0.400 0.8996037 0.8994950 0.8993863 0.8992774
0.500 0.8377743 0.8376347 0.8374950 0.8373551
0.600 0.7609742 0.7608061 0.7606380 0.7604697
0.700 0.6711730 0.6709820 0.6707910 0.6705999
0.800 0.5718520 0.5716467 0.5714413 0.5712359
0.900 0.4678951 0.4676865 0.4674778 0.4672692
0.920 0.4470533 0.4468454 0.4466375 0.4464297
0.940 0.4263091 0.4261025 0.4258960 0.4256895
0.960 0.4057126 0.4055082 0.4053043 0.4051013
0.980 0.3856894 0.3857399 0.3858928 0.3861650
0.995 0.4706318 0.4840198 0.4971599 0.5099797
0.996 0.5145287 0.5298502 0.5445338 0.5585636
0.997 0.5784173 0.5948414 0.6102125 0.6245972
0.998 0.6711637 0.6868021 0.7010957 0.7141981
0.999 0.8055503 0.8167111 0.8266744 0.8356206
1.000 1.0000000 1.0000000 1.0000000 1.0000000

solution wherever available. It can be observed from the results that the present
method approximates with exact solution very well, which shows the efficiency
of the method. From the graphs it can be observed that in the case of left end
boundary value problems, as δ increases, the thickness of the boundary layer
decreases while for the right end boundary layer problems as δ increases, the
thickness of the boundary layer increases.
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