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Abstract

Under the heavy irradiation, when the production and the recombination of interstitials and vacancies are
included, the diffusion equations become nonlinear. An effort has been made to arrange an appropriated
transformation of these nonlinear differential equations to soluble Poisson’s equations, so that analytical
solutions for simultaneously calculating the concentrations of interstitials and vacancies in the angular
dependent Cottrell's potential of the edge dislocation have been derived from the well-known Green’s theorem

and perturbation theory.
1. Introduction

When the solid material is irradiated by the energetic particles, the equal numbers of the interstitials and
vacancies (hereafter denoted by i and v) are produced in the matrix. As the concentration of i and v increase,
they will be recombined significantly by each other as well as absorbed by the sinks such as grain boundaries,
dislocations, external surfaces, etc.

It is particularly known that the dislocation absorbs i more preferentially than v, so that the excess of v will be
built up in a certain region of matrix. Such an idea leads one to believe that the dislocation plays an important
role on the nucleation of voids and irradiation-enhanced creep of materials during the heavy irradiation

In order to figure out the possibility of such phenomena, one should solve the appropriate diffusion equations
with an assumption that such phenomena are associated with diffusion of i and v under the conditions
mentioned above.[1-5] In doing so, one wile encounter a couple of difficulties: First, when the production and
recombination of i and v are included, the diffusion equations become nonlinear. Second, the interaction
potential (e.g. the Cottrell’s potential) of the edge dislocation is angular dependent. Those problems are
troublesome so that some works in the field have omitted all or some of them[6-9]. In fact, both should be
included for these nonlinear differential equations to be solved as seen in the following sections. While some
other did included them but calculated the results numerically[10-11}. Since the production and recombination

of i and v ‘are very important physical processes, the omission of them can result in serious errors in
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understanding and interpreting the observations

This paper presents an analytical solution for calculating the concentrations of i and v simultaneously in
angular dependent Cottrel’s potential field of the edge dislocation during heavy irradiation by means of the
well-known Green theorem and the perturbation theory. The transformation of nonlinear diffusion equations to
the soluble equation and applicability of perturbation theory will be examined in Sec. 2. The boundary

conditions and the Green theorem will be discussed in Sec. 3.

2. Diffusion Equations and Their Transformation to Soluble Equations
2.1 Nonlinear Diffusion Equations

When the recompination of i and v becomes significant, the concentrations of i and v should satisfy
oC, .
'ﬁt='~V'Ji +n—R,.‘,C,C‘, (la)

2C = a, en-R,CC, )

where 1 is the production rate of i and v by the irradiation, R,, is the recombination rate of i and v, and C,
is the concentration of the a-type defect (o denotes i or v). In Eq.(1a) and (1b), the thermal generation of i and v

was neglected in compared with 7.

Substitution of the current density[12],

J,=-D,(VC,+8C, V4, ). @

in the cottrell’s potential of the edge dislocation ¢, . where

¢, = K (cos8/r) (3)
with

K —(ﬂ—b——HV)QA 4

« “\37 1= ) 0% @

for Eq.(1a) and {1b) gives, at the quasi-steady state conditions,

D(VC,+fCV4)+n-R.CC, =0 (5a)

D(V:C, +BC.V4,)+n-R.CC, =0  (5b)
where D, is the diffusion coefficient of a-type defects: k , 7= 1' 8 is the usual meaning of thermal energy:
M b, v, £, . and ~a, are the shear modulus. the Burgers vector, the Poisson’s ratio, the atomic volume,
and the dilation (in unit of QO) due to the @ -type defect respectively; and r(r,8) is the polar coordinate

of the defect with respect to the edge dislocation with the angle & measured from its extra plane. In these Eq.

(5a) and (5b), we neglected the dislocation movement due to absorption of i and v.

2.2 Transformation to Soluble Equations
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For simplicity, taking

R=R,/(DD,)., ©)
. 1
pc=(n/R)z(1-8), Q)
1 ,
a,=(nR)%, ®
and
z= aQ,r, ®
then

(V2-1)S, =-pVS, -V§+S,0-S;)) (10a)

(V2-1)S,= -BVS, -Vg,+8,(-S,) (10b)
It will be discussed in Sec.3.3. that the right-hand sides of Eq. (10a) and (10b) are small enough to be treated
as the perturbation.

The differential equation,
(V2 -1)s=0, an

does not look like Laplace equation. However, since S(z) is axially independent, the equation is adjustable to

be the modified Bessel function.
3.0 Analytical Solutions
3.1 Boundary Conditions

Generally speaking, the defects would jump

by a distance d (the jumping distance) per a
jump. However, as the closer they approach to
the dislocation, the larger the elastic interaction
becomes. When they reach at a certain distance,
they would jump directly to the center through-

the rapid rearrangement of lattice atoms near

the dislocation core. It is referred to as the 717 E<k.T
8

Lattice Potential

"core radius". which is the inner boundary. In

such a case, the migration energy of the defects Dislocation Core Radius

inside the core radius is smaller than the L/ Core

A . p
thermal energy as shown in Fig. 1. It is ° Distance from the Core, r

therefore true that the core radius is dependent Fig.1. Lattice Potential Near the Dislocation Core
upon the various parameters including the

temperature, the interaction strength, etc.
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From the reason mentioned above, the boundary condition on the inner surface (7, : the core radius) can be

naturally

C,(r)=0 o S,(r)=1 (12)

On the other hand, the condition on the outer boundary surface (7, : the mid-point between dislocations) is

éc, B a8,
. =0 or Or

Or =0 (13)
which is true only when the perturbations (right-hand sides of Eq. (10)) are not‘ taken into account. However,

r=n,

when the interaction between the dislocation and point defects is considered, there are some amount of flow-in

and flow-out of i and v (referred to as “drift diffusion”) through the outer boundary surface.

3.2 Analytical Solutions

In order to apply Green theorem and perturbation theory, we expend S,(Z) and S‘,(Z) in the space

where cos 0 is one of the eigen-functions, that is,

S(z)= Z Fu(z)e™®

= F;)(z) +ZZF"(z)cosn9 (14a)
n=1
and
S,(@)=H,(2) +2ZHn(z)cosr10. (14b)

n=|\

Then the differential equation for i [Eq.(lOa)] becomes

& 10 n’

z20z
where
p.(2) = p(2)+ p;(2) (16)
with
qﬂK . () . (n+))
pd(z 8 22 E)—l + z n= +ED+I_—;A el |2 (]7)
1 o
ps(z)=—5;[ﬂo(l—Fo)—zzF,,,H,,,], (18a)
m=1
and
pn (Z) = [ n Z m n+m + I?IH-mH ) fOr n 2 1 N (18b)

m=0

In Eq.(17), the prime denotes the derivative with respect to z.
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The solutions are
F@)=v,@+ 1@ +£ () a9
where ¥/, (z) are the general solutions of
s +1 g (1+"2) (2)=0 (20)
- == - 7)=
ozt 20z AL
which is the modified Bessel function, f,,d(z) are the special functions due to the drift diffusion associated

with p?(z), and f"’(z) are that (refer to as recombination) related with p,:(z). We have the

corresponding solutions for v as
H(z)=y,2)+h (D +h(2). Q1)

Among Y, (z)., only one that satisfied the boundary éonditions (Egs. (12) and (13)) is

K (@)L@+1()KE)
K (2,)1o(2) + 1,(2, ) Ko (2,

vo(@) =

and others, which do not satisfy, are
v,(z)=0 for n21.

Having the Green function of

G(z,2z)= D g,(z2)e"® 3)

H=-—-0

with
g" (Z' Z,) = A" [1" (Zo )K" (z< ) - K" (ZO )In (z< )] X [1" (zb )Kn (z> ) - Kn (zb )I" (z> )] (24)
and
4,=2/ [1,, (zo)K” (z,,) ~-K, (zo)l ,,,(z,, )]
where z_(z_)is the larger (smaller) of z and z', as we usually do, the special solutions are given by
£1@)=[g,@)plE)d @5
and
£1@=[a. ) @xd . @b

So that, from Eq.(19), we conclude

F(2) =y (D + £l (2)+ f7(2) (269)
F(2)=f(2)+ f/(2) for n>1.(26b)
H,,(z) for v can be easily obtained by exchanging the interaction strength K, in p,‘,i (z) (Eq. (17)) for

K, . Asthe results, H,(z) have also been done as soon as F,(z) have been calculated.
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3.3 Perturbations

1.0

The first term (drift term) in the right- hand
side of Eq. (10) is small in the region under o8t
consideration since the region, where the
interaction field is large, is excluded by the ‘:’_’.\ 06l
dislocation core. The second term g
(recombination term) is also small since = 4|
S<1 and (1= S) <1, so that the value of f’)
S(1-S) is smailer than the smaller of S 02+
and (1-S). As the results, the maximum
value of S(1-S§) is 0.25 as shown in Fig. 2 o0 z Distance from the Core .
since S is almost equalto /. Fig.2. Value of S, {1-S), and S{1-S)

4. Conclusions

Since drift term (interaction term) and recombination term are small enough for S(Z) to be (z) at the

zero order approximation, which is the case of Eq. (i1), fod (z) and fo’(z) are calculated through Eq. (25a)
d r . d r

and (25b). If f; (z) and £ (2) are small sufficiently (they are expected to be s0), f,: (z) and £/ (z) all

for 721 can be evaluated with i, (Z) only until they converge.
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